The effect of interaction between salicylic acid and drought stress on growth and photosynthetic rate of Basella alba and B. rubra

##plugins.themes.bootstrap3.article.main##

ANNIS WATURROIDAH AYUNINGTIAS
SOLICHATUN
ARTINI PANGASTUTI

Abstract

Abstract. Ayuningtias AW, Solichatun, Pangastuti A. 2023. The effect of interaction between salicylic acid and drought stress on growth and photosynthetic rate of Basella alba and B. rubra. Asian J Agric 7: 108-115. Basella alba L and B. rubra L are two species of potential drugs and have very potential to develop because of the secondary metabolic content. The change of climate, which is uncertain and prolongs the dry season, is a problem in the cultivation of these plants. Drought stress affects the aspect in growth and photosynthesis rate. The application of salicylic acid tolerated plants due to drought stress and gave a physiologically different response from both plants. This study aimed to determine the interaction effect of Salicylic Acid (SA) on growth and photosynthesis rate in B. alba and B. rubra. A completely random design was used. Two factors of this study were salicylic acid and drought stress. The dosage of salicylic acid were 0 mM, 2 mM, 4 mM, and 6 mM, and field capacities were set by 100%, 75%, 50%, and 25%. Observed data in this study include plant height, leaf area, photosynthesis rate, stomata conductance, and transpiration rate at B. alba and B. rubra. The result showed in B. alba KL 50% and SA 4 mM (50.1 cm2), in B.rubra KL 25% and SA 4 mM (52.9 cm2 ) were the best treatment in plant high. The highest values of leaf area in B. alba are KL 75% and SA 2mM (91.72 cm2), and in B. rubra, are KL 50% and SA 4 mM (122.67 cm2). The treatment KL 50% and SA 6 mM on B. alba showed the highest result in photosynthesis rate, stomata conductance, and transpiration rate (0.8663 µmol m-2 s-1; 0.9468 µmol m-2 s-1; 0.1890 µmol m-2 s-1), in B. rubra the highest value are KL 75% and SA 6mM (0.9202 µmol m-2 s-1; 0.9468 µmol m-2 s-1; 0,105 µmol m-2 s-1). This study concludes that the interaction between salicylic acid and field capacity significantly affects growth and photosynthesis rate.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Abobatta W. 2019. Drought adaptive mechanisms of plants - A review. Adv Agric Environ Sci 2 (1): 62-65. DOI: 10.30881/aaeoa.00022.
Ahmad Z, Waraich EA, Ahmad R, Shahbaz M. 2017. Modulation in water relations, chlorophyll contents and antioxidants activity of maize by foliar phosporus application under drought stress. Pak J Bot 49 (1): 11-19.
Alam P, Balawi TA, Faizan M. 2023. Antioxidant enzyme activity of Triticum aestivum when exposed to salt. Molecules 28: 100. DOI: 10.3390/molecules28010100.
Badan Pengkajian dan Penerapan Teknologi (BPPT). 2021. Wujudkan Kemandirian Bahan Baku Obat Melalui Inovasi Pati Farmasi Sebagai Eksipien Berbasis Ubi Kayu. https://www.bppt.go.id/berita-bppt/wujudkan-kemandirian-bahan-baku-obat-melalui-inovasi-pati-farmasi-sebagai-eksipien-berbasis-ubi-kayu. [Indonesian]
Barnabás B, Jäger K, Fehér A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31 (1): 11-38. DOI: 10.1111/j.1365-3040.2007.01727.x.
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. 2009. Plant drought stress: Effects, mechanisms and management. Agron Sustain Dev 29 (1): 185-212. DOI: 10.1051/agro:2008021.
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, AL Mahmud J, Fujita M, Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9 (8): 1-52. DOI: 10.3390/antiox9080681.
Hossain MA, Bhattacharjee S, Armin S-M, Qian P, Xin W, Li H-Y, Burritt DJ, Fujita M, Tran L-SP. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front Plant Sci 6 (June): 1-19. DOI: 10.3389/fpls.2015.00420.
Khalvandi M, Siosemardeh A, Roohi E, Keramati S. 2021. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon 7 (1): e05908. DOI: 10.1016/j.heliyon.2021.e05908.
Kordi S, Saidi M, Ghanbari F. 2013. Induction of drought tolerance in sweet basil (Ocimum basilicum L) by salicylic acid. Intl J Agric Food Res 2: 2. DOI: 10.24102/ijafr.v2i2.149.
Kumar A, Basu S, Ramegowda V, Pereira A. 2017. Mechanisms of drought tolerance in rice. In: Sasaki T (eds). Achieving Sustainable Cultivation of Rice. Burleigh Dodds Science Publishing Limited, Cambridge. DOI: 10.19103/as.2106.0003.08.
Li G, Peng X, Wei L, Kang G. 2013. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529 (2): 321-325. DOI: 10.1016/j.gene.2013.07.093.
Liang G, Liu J, Zhang J, Guo J. 2020. Effects of drought stress on photosynthetic and physiological parameters of tomato. J Am Soc Hortic Sci 145 (1): 12-17. DOI: 10.21273/JASHS04725-19.
Mishra SS, Behera PK, Kumar V, Lenka SK, Panda D. 2018. Physiological characterization and allelic diversity of selected drought tolerant traditional rice (Oryza sativa L.) Landraces of Koraput, India. Physiol Mol Biol Plants 24 (6): 1035-1046. DOI: 10.1007/s12298-018-0606-4.
Morovvat SA, Sadrabadi R, Noferest KS, Darban AS, Salati M. 2021. Effects of foliar application chitosan and salicylic acid on physiological characteristics and yield under deficit irrigation condition. Agrivita 43 (1): 101-113. DOI: 10.17503/agrivita.v43i1.2796.
Movahedi M, Zoulias N, Casson SA, Sun P, Liang Y-K, Hetherington AM, Gray JE, Chater CCC. 2021. Stomatal responses to carbon dioxide and light require abscisic acid catabolism in Arabidopsis. Interf Foc 11 (2): 20200036. DOI: 10.1098/rsfs.2020.0036.
Najafabadi MY, Ehsanzadeh. 2017. Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. Photosynthetica 55 (4): 611-22. DOI: 10.1007/s11099-017-0673-8.
National Aeronautics and Space Administration (NASA). 2021. Video: Global Warming from 1880 to 2022. https://climate.nasa.gov/climate_resources/139/video-global-warming-from-1880-to-2022/.
Nazar R, Umar S, Khan NA, Sareer O. 2015. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. S Afr J Bot 98: 84-94. DOI: 10.1016/j.sajb.2015.02.005.
Okunlola GO, Olatunji OA, Akinwale RO, Tariq A, Adelusi AA. 2017. Physiological response of the three most cultivated pepper species (Capsicum spp.) in africa to drought stress imposed at three stages of growth and development. Sci Hortic 224: 198-205. DOI: 10.1016/j.scienta.2017.06.020.
Pinheiro C, Chaves MM. 2011. Photosynthesis and drought: Can we make metabolic connections from available data? J Exp Bot 62 (3): 869-882. DOI: 10.1093/jxb/erq340.
Pirasteh?Anosheh H, Saed?Moucheshi A, Pakniyat H, Pessarakli P. 2016. Stomatal responses to drought stress. In: Ahmad P (eds). Water Stress and Crop Plants: A Sustainable Approach. John Wiley & Sons, Ltd., New Jersey. DOI: 10.1002/9781119054450.ch3.
Rehschuh R, Cecilia A, Zuber M, Faragó T, Baumbach T, Hartmann H, Jansen S, Mayr S, Ruehr N. 2020. Drought-induced xylem embolism limits the recovery of leaf gas exchange in scots pine. Plant Physiol 184 (2): 852-864. DOI: 10.1104/pp.20.00407.
Saputra D, Timotiwu PB, Ermawati. 2015. Pengaruh cekaman kekeringan terhadap pertumbuhan dan produksi benih lima varietas kedelai. Jurnal Agrotek Tropika 3 (10): 7-13. DOI: 10.23960/jat.v3i1.1881. [Indonesian]
Sayyari M, Ghavami M, Ghanbari F, Kordi S. Assessment of salicylic acid impacts on growth rate and some physiological parameters of lettuce plants under drought stress conditions. 2013. Intl J Agric Crop Sci 5: 1951-1957.
Sharma D, Shree B, Kumar S, Kumar V, Sharma S, Sharma S. 2022. Stress induced production of plant secondary metabolites in vegetables: Functional approach for designing next generation super foods. Plant Physiol Biochem 192: 252-272. DOI: 10.1016/j.plaphy.2022.09.034.
Sharma V, Kumar A, Chaudhary A, Mishra A, Rawat S, Basavaraj YB, Shami V, Kaushik P. 2022. Response of wheat genotypes to drought stress stimulated by PEG. Stresses 2 (1): 26-51. DOI: 10.3390/stresses2010003.
Simbeye DS, Mkiramweni ME, Karaman B, Taskin S. 2023. Plant water stress monitoring and control system. Smart Agricultural Technology 3: 100066. DOI: 10.1016/j.atech.2022.100066.
Wiraatmaja IW. 2017. Bahan ajar Zat Pengatur Tumbuh Auksin dan Cara Penggunaannya dalam Bidang Pertanian. Program Studi Agroekoteknologi, Fakultas Pertanian, Universitas Udayana, Bali. [Indonesian]
Yang J, Duan L, He H, Li Y, Li X, Liu D, Wang J, Jin G, Huang S. 2022. Application of exogenous KH2PO4 and salicylic acid and optimization of the sowing date enhance rice yield under high-temperature conditions. J Plant Growth Reg 41 (4): 1532-1546. DOI: 10.1007/s00344-021-10399-y.
Yang X, Wang B, Chen L, Li P, Cao C. 2019. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep 9 (1): 1-12. DOI: 10.1038/s41598-019-40161-0.
Zulfiqar F, Ashraf M. 2021. Bioregulators: Unlocking their potential role in regulation of the plant oxidative defense system. Plant Mol Biol 105: 11-41. DOI: 10.1007/s11103-020-01077-w.