Effects of iron supplementation rates and time of application on iron biofortification and macronutrient uptake in radish (Raphanus sativus) microgreens

##plugins.themes.bootstrap3.article.main##

JOEL SIMBORIO LEAL
MYRNA GEMENTIZA PABIONA
https://orcid.org/0000-0002-8619-0436
JUNESA UDTOHAN CRISTOBAL
ANDREW BOYLES MELENCION
JOHN REY NATINGA LABAJO
https://orcid.org/0000-0002-8540-3161

Abstract

Abstract. Leal JS, Pabiona MG, Cristobal JU, Melencion AB, Labajo JRN. 2025. Effects of iron supplementation rates and time of application on iron biofortification and macronutrient uptake in radish (Raphanus sativus) microgreens. Asian J Agric 9: 94-102. This study investigates strategies to enhance iron biofortification in radish (Raphanus sativus) microgreens through various iron supplementation rates and application timings. The primary objectives were to evaluate fresh weight at harvest and iron absorption efficiency under different treatment conditions. Results demonstrated significant variations in fresh weight, with microgreens treated with SNAP + 10 ppm iron chelate six days post-blackout (A1B3) yielding the highest fresh weight (149.38 g), while those treated four days post-blackout showed the lowest weight (113.54 g). In terms of iron content, treatment A2B1 exhibited the highest concentration (247.78 ppm), whereas A1B2 recorded the lowest (185.03 ppm). The study highlights the intricate relationship between iron supplementation levels (Factor A) and application timing (Factor B) concerning growth and nutrient uptake dynamics in radish microgreens. Overall fresh weight did not differ significantly across iron levels, based on iron concentration x application timing. Moderate iron concentrations initially supported fresh weight, but excess levels hindered growth, emphasizing the delicate balance required in iron supplementation strategies. Nitrogen uptake benefited from moderate iron levels and delayed application, while phosphorus and potassium assimilation were optimized with timely nutrient supply (p<0.05). Notably, total potassium content varied significantly (p<0.05), peaking at 20 ppm iron, suggesting iron's facilitative role in potassium uptake up to a threshold. Moreover, iron content in microgreens remained stable across tested concentrations but significantly increased with specific application timings, underscoring the importance of precise nutrient management for effective iron biofortification. These findings contribute to advancing tailored nutrient management practices to optimize growth, nutrient uptake dynamics, and iron biofortification in radish microgreens. Future research directions should explore underlying physiological mechanisms to refine strategies for sustainable crop production and enhance nutritional quality.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Aznar A, Chen N, Thomine S, Dellagi A. 2015. Immunity to plant pathogens and iron homeostasis. Plant Sci 240: 90-97. DOI: 10.1016/j.plantsci.2015.08.022.
Bodale I, Mihalache G, Achitei V, Teliban GC, Cazacu A, Stolero V. 2021. Evaluation of nutrient uptake by tomato plants in different phenological stages using an electrical conductivity technique. Agriculture 11 (4): 292. DOI: 10.3390/agriculture11040292.
Buturi CV, Mauro RP, Fogliano V, Leonardi C, Giuffrida F. 2021. Mineral biofortification of vegetables as a tool to improve human diet. Foods 10 (2): 223. DOI: 103390/foods/10020223.
Chandra D, Kim JG, Kim YP. 2012. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic Environ Biotechnol 53 (1): 32-40. DOI: 10.1007/s13580-012-0075-6.
Corrado G, El-Nakhel C, Graziani G, Pannico A, Zarrelli A, Giannini P, Ritieni A, De Pascale S, Kyriacou MC, Rouphael, Y. 2021. Productive and morphometric traits, mineral composition and secondary metabolome components of borage and purslane as underutilized species for microgreens production. Horticulturae 7 (8): 211. DOI: 10.3390/horticulturae7080211.
Dad FP, Khan WD, Tanveer M, Ramzani PMA, Shaukat R, Muktadir A. 2020. Influence of iron-enriched biochar on Cd sorption, its ionic concentration and redox regulation of radish under cadmium toxicity. Agriculture 11 (11): 1. DOI: 10.3390/agriculture11010001.
Di Bella MC, Niklas A, Tosccano S, Picchi V, Romano D, Lo Scalzo R, Branca F. 2020. Morphometric characteristics, polyphenols, and ascorbic acid variation in Brassica oleraceae L. novel foods: Sprouts, microgreens, and baby leaves. Agronomy 10 (6): 782. DOI: 10.3390/agonomy10060782.
Di Gioia F, De Bellis P, Mininni C, Santamaria P, Serio F. 2016. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J Sci Food Agric 97 (4): 1212-1219. DOI: 10.1002/jsfa.7852.
Di Gioia F, Petropoulos S, Ozores-Hampton M, Morgan K, Rosskopf E. 2019. Zinc and iron agronomic biofortification of Brassica microgreens. Agronomy 9 (11): 677. DOI: 10.3390/agronomy9110677.
Dias DM, de Castro Moreira ME, Gomes MJC, Lopes Toledo RC, Nutti MR, Pinheiro Sant’Ana HM, Martino HSD. 2015. Rice and bean targets for biofortification combined with high carotenoid content crops regulate transcriptional mechanisms increasing iron bioavailability. Nutrients 7 (11): 9683-9696. DOI: 10.3390/nu7115488.
Duck KA, Connor JR. 2016. Iron uptake and transport across physiological barriers. Biometals 29: 573-591. DOI: 10.1007/s10534-016-9952-2.
Ebert AW. 2022. Sprouts and microgreens—novel food sources for healthy diets. Plants 11 (4): 571. DOI: 10.3390/plants11040571.
Fan S. 2016. Ending hunger and undernutrition by 2025: The role of horticultural value chains. Acta Hortic 1126: 9-20. DOI: 10.17660/ActaHortic.2016.1126.2.
Filho ABC, Cortez JWM, de Sordi D, Urrestarazu M. 2015. Common chicory performance as influenced by iron concentration in the nutrient solution. J Plant Nutr 38: 1289-1494. DOI: 10.1080/01904167.2014.983609
Ghasemi S, Khoshgoftarmanesh AH, Hadadzadeh H, Jafari M. 2012. Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture. J Plant Growth Regul 31: 498-508. DOI: 10.1007/s00344-012-9259-7.
Giordano M, El-Nakhel C, Pannico A, Kyriacou MC, Stazi SR, De Pascale S, Rouphael Y. 2019. Iron biofortification of red and green pigmented lettuce in closed soilless cultivation impacts crop performance and modulates mineral and bioactive composition. Agronomy 9 (6): 290. DOI: 10.3390/agronomy9060290.
Harding K, Aguayo V, Webb P. 2017. Hidden hunger in South Asia: A review of recent trends and persistent challenges. Public Health Nutr 21 (4): 785-795. DOI: 10.1017/S1368980017003202.
Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, Borodulin-Nadzieja L, Banasiak W, Polonski L, Filippatos G, McMurray JJV, Anker SD, Ponikowski P. 2010. Iron deficiency: An ominous sign in patients with systolic chronic heart failure. Eur Heart J 31 (15): 1872-1880. DOI: 10.1093/eurheartj/ehq158.
Kobayashi T, Nozoye T, Nishizawa NK. 2019. Iron transport and its regulation in plants. Free Radic Biol Med 133: 11-20. DOI: 10.1016/j.freeradbiomed.2018.10.439.
Kowitcharoen L, Phornvillay S, Lekkham P, Pongprasert N, Srilaong V. 2021. Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl Sci 11 (17): 7981. DOI: 10.3390/app11177981.
Kutman UB, Yildiz B, Cakmak I. 2011. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 342: 149-164. DOI: 10.1007/s11104-010-0679-5.
Kyriacou MC, El-Nakhel C, Graziani G, Pannico A, Soteriou GA, Giordano M, Ritieni A, De Pascale S, Rouphael Y. 2019. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem 277: 107-118. DOI: 10.1016/j.foodchem.2018.10.098.
Lapaz A, Yoshida CHP, Gorni PH, Freita-Silva L, Araujo T, Ribeiro C. 2021. Iron toxicity: Effects on the plants and detoxification strategies. Acta Bot Bras 36: e2021abb0131. DOI: 10.1590/0102-33062021abb0131.
Lewis GD, Semigran MJ, Givertz MM, Malhotra R, Anstrom KJ, Hernandez AF, Shah MR, Braunwald E, Braunwald E. 2016. Oral iron therapy for heart failure with reduced ejection fraction: Design and rationale for oral iron repletion effects on oxygen uptake in heart failure. Circ Heart Fail 9 (5): e000345. DOI: 10.1161/CIRCHEARTFAILURE.115.000345.
Li T, Lalk G, Arthur J, Johnson M, Bi G. 2021b. Shoot production and mineral nutrients of five microgreens as affected by hydroponics substrate type and post-emergent fertilization. Horticulturae 7 (6): 129. DOI: 10.3390/horticulturae7060129.
Li T, Lalk GT, Bi G. 2021a. Fertilization and pre-sowing seed soaking affect yield and mineral nutrients of ten microgreen species. Horticulturae 7 (2): 14. DOI: 10.3390/horticulturae7020014.
Mitra G. 2017. Essential plant nutrients and recent concepts about their uptake. In: Naeem M, Ansari AA, Gill SS (eds). Essential Plant Nutrients: Uptake, Use Efficiency, and Management. Springer, Cham. DOI: 10.1007/978-3-319-58841-4_1.
Mitra GN. 2015. Regulation of Nutrient Uptake by Plants. Springer, New Delhi. DOI: 10.1007/978-81-322-2334-4.
Morrissey J, Sutak R, Paz-Yepes J, Tanaka A, Moustafa A, Veluchamy A, Thomas Y, Botebol H, Bouget FY, McQuaid JB, Tirichine L, Allen AE, Lesuisse E, Bowler C. 2015. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr Biol 25 (3): 364-371. DOI: 10.1016/j.cub.2014.12.004.
Pannico A, El-Nakhel C, Graziani G, Kyriacou MC, Giordano M, Soteriou GA, Zarrelli A, Ritieni A, De Pascale S, Rouphael Y. 2020. Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens genotypes. Antioxidants 9 (4): 272. DOI: 10.3390/antiox9040272.
Park SA, Grusak MA, Oh MM. 2014. Concentrations of minerals and phenolic compounds in three edible sprout species treated with iron-chelates during imbibition. Hortic Environ Biotechnol 55: 471-478. DOI: 10.1007/s13580-014-0075-9.
Philippine Council for Agriculture, Forestry and Natural Resources Research and Development (PCARRD). 1991. Standard Method of Analysis of Soils, Plant Tissue, Water, and Fertilizer. PCARRD, Los Banos, Laguna. [Philippines]
Przybysz A, Wrochna M, Ma?ecka-Przybysz M, Gawro?ska H, Gawro?ski SW. 2016. Vegetable sprouts enriched with iron: Effects on yield, ROS generation and antioxidative system. Sci Hortic 203: 110-117. DOI: 10.1016/j.scienta.2016.03.017.
Rajan P, Lada RR, MacDonald MT. 2019. Advancement in indoor vertical farming for microgreen production. Am J Plant Sci 10 (08): 1397. DOI: 10.4236/ajps.2019.108100.
Reitra R, Heinen M, DImpaka C, Bindraban P. 2017. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun Soil Sci Plant Anal 48 (16): 1895-1920. DOI: 10.1080/00103624.2017.1407429.
Rout G, Sahoo S. 2015. Role of iron in plant growth and metabolism. Rev Agric Sci 3: 1-24. DOI: 10.7831/ras.3.1.
Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012 (1): 217037. DOI: 10.1155/2012/217037.
Smolik B, Cichocka J, Materny A, ?nioszek M, Zakrzewska H. 2013. Effect of iron deficiency and excess on biometric and biochemical parameters indicated in the radish sprouts (Raphanus sativus L. Subvar. radicula pers.). Environ Prot Nat Resour 24 (3): 29-32. DOI: 10.2478/oszn-2013-0028.
Thompson B, Amoroso L. 2014. Improving Diets and Nutrition: Food-Based Approaches. CABI, Wallingford. DOI: 10.1079/9781780642994.0000.
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch-Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle H, Pentieva K, Siani A, Thies F, Tsabouri S, Vicenti M, Aggett P, Tait S, Lecarre A, Fabiani L, Karavasiloglou N, Saad RM, Sofroniou A, Titz A, Naska A. 2024. Scientific opinion on the tolerable upper intake level of iron. EFSA J 22 (6): 8819. DOI: 10.2903/j.efsa.2024.8819.
Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PA, Pieterse CM. 2017. Iron and immunity. Ann Rev Phytopathol 55 (1): 355-375. DOI: 10.1146/annurev-phyto-080516-035537.
Yoneyama T, Ishikawa S, Fujimaki S. 2015. Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Intl J Mol Sci 16 (8): 19111-19129. DOI: 10.3390/ijms160819111.
Zhang H, Zhabyeyev P, Wang S, Oudit G. 2018. Role of iron metabolism in heart failure: from iron deficiency to iron overload. BBA – Mol Basis Dis 1865: 1925-1937. DOI: 10.1016/j.bbadis.2018.08.030.
Zhang H, Zhabyeyev P, Wang S, Oudit GY. 2019. Role of iron metabolism in heart failure: From iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis 1865 (7): 1925-1937. DOI: 10.1016/j.bbadis.2018.08.030.
Zhang X, Zhang F, Mao D. 1999. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): Phosphorus uptake. Plant Soil 209: 187-192. DOI: 10.1023/A:1004505431879.
Zieli?ska-Dawidziak M, Staniek H, Król E, Piasecka-Kwiatkowska D, Twardowski T. 2016. Legume seeds and cereal grains? Capacity to accumulate iron while sprouting in order to obtain food fortificant. Acta Sci Pol Technol Aliment 15 (3): 333-338. DOI: 10.17306/J.AFS.2016.3.32.