Growth vitamin hormone and shading intensity affect the rhizo-caulogenesis of etiolated avocado microclonal rootstocks

##plugins.themes.bootstrap3.article.main##

FRANCISCO JR. O. ESGRINA
ROMIL J. TAN

Abstract

Abstract. Esgrina FJO, Tan RJ. 2025. Growth vitamin hormone and shading intensity affect the rhizo-caulogenesis of etiolated avocado microclonal rootstocks. Asian J Agric 9: 160-173. The propagation of avocado clonal rootstocks is essential for a resilient, productive, and quality commercial cultivation. Optimizing growth conditions, particularly shading intensity and vitamin hormone concentration, plays a critical role in enhancing rhizogenesis, caulogenesis, and other physiological traits. Despite substantial research, the combined effects of these factors remain insufficiently explored. Thus, this study investigated the effects of shading intensity (40, 60, and 80%) and vitamin hormone concentrations (0, 0.1, 0.2, and 0.3 mL/L of water) on key morphological and physiological parameters of etiolated avocado clonal rootstocks, using a split-plot arrangement in randomized complete block design. The results revealed significant interaction effects (1%, Tukeys’ HSD) between shading intensity and hormone concentration in all parameters. The highest root number (1.33), root length (0.53 cm), chlorophyll content (61.10 SPAD), fresh weight (25.53 g), dry weight (10.33 g), were observed under 80% shading with 0.2-0.3 mL of vitamin growth hormone/L of water. Moderate shading (60%) combined with 0.1-0.2 mL of vitamin growth hormone promoted stem elongation (25.81 cm), and leaf area (100.99 cm²). These findings underscore the necessity of tailoring propagation protocols to specific environmental and hormonal conditions. The study provides comprehensive insights into optimizing avocado rootstock propagation, contributing to sustainable agricultural practices and supporting the growing global demand for avocados.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Abdel-Mawgoud, A. M. R., El-Abd, S. O., Singer, S. M., Abou-Hadid, A. F. & Hsiao, T. C. (1996). Effect of shade on the growth and yield of tomato plants. Acta Hortic., 434, 313-320
Alon, E., Shapira, O., Azoulay-Shemer, T., & Rubinovich, L. (2022). Shading nets reduce canopy temperature and improve photosynthetic performance in ‘Pinkerton’ avocado trees during extreme heat events. Agronomy, 12(6), 1360. https://doi.org/10.3390/agronomy12061360
Aly, M. M., El Sawy, A. M., & El Gendy, R. A. (2019). Comparative study of different shading types on growth and yield of ginger plants. Middle East Journal of Agriculture Research, 08(04), 1264-1270. https://doi.org/10.36632/mejar/2019.8.4.28
Arévalo-Gardini, E., Farfán, A., Barraza, F., Arévalo-Hernández, C.O., Zúñiga-Cernades, L.B., Alegre, J., & Baligar, V.C. (2021). Growth, physiological, nutrient-uptake-efficiency and shade-tolerance responses of cacao genotypes under different shades. Agronomy, 11(08), 1536. https://doi.org/10.3390/agronomy11081536
Bangar, S. P., Dunno, K., Dhull, S. B., Kumar Siroha, A., Changan, S., Maqsood, S., & Rusu, A. V. (2022). Avocado seed discoveries: Chemical composition, biological properties, and industrial food applications. Food chemistry: X, 16, 100507. https://doi.org/10.1016/j.fochx.2022.100507
Barceló-Muñoz, A., & Pliego-Alfaro, F. (2003). Micropropagation of avocado (Persea americana Mill.). In: Jain, S.M., Ishii, K. (eds) Micropropagation of Woody Trees and Fruits. Forestry Sciences, 75. https://doi.org/10.1007/978-94-010-0125-0_17
Bhore, S. J., Ochoa, D. S., Houssari, A. A., Zelaya, A. L., Yang, R., Chen, Z., Deeya, S. S., Sens, S. C. D. S., Schumann, M., Zhang, Z., & Eltantawy, E. (2021). The Avocado (Persea americana Mill.): A review and sustainability perspectives. Preprints. https://doi.org/10.20944/preprints202112.0523.v1
Blakey, R. J., van Rooyen, Z., Kohne, J. S., Malapana, K. C., Mazhawu, E., Tesfay, S. Z., & Savage, M. J. (2015). Growing avocados under shade netting: Progress report – year 2. South African Avocado Growers’ Association Yearbook, 38. 76-79. https://www.researchgate.net/publication/310844155_Growing_
Brand, M. H. (1997). Shade influences plant growth, leaf color, and chlorophyll content of Kalmia latifolia L. cultivars. HortScience, 32(2), 206-208. https://agris.fao.org/agris-search/search.do?recordID=US1997059988
Brini, F., Mseddi, K., Brestic, M., & Landi, M. (2022). Hormone-mediated plant responses to light quality and quantity. Environmental and Experimental Botany, 202, 105026. https://doi.org/10.1016/j.envexpbot.2022.105026
Calatrava, V., Hom, E. F. Y., Guan, Q., Llamas, A., Fernandez, E., & Galvan, A. (2024). Genetic evidence for algal auxin production in Chlamydomonas and its role in algal-bacterial mutualism. iScience, 27(1), 108762. https://doi.org/10.1016/j.isci.2023.108762
Chen, H., Lei, Y., Sun, J., Ma, M., Deng, P., Quan, J., & Bi, H. (2023). Effects of different growth hormones on rooting and endogenous hormone content of two Morus alba L. cuttings. Horticulturae, 9, 552. https://doi.org/10.3390/horticulturae9050552.
Chen, J., Wu, S., Dong, F., Li, J., Zeng, L., Tang, J., & Gu, D. (2021). Mechanism underlying the shading-induced chlorophyll accumulation in tea leaves. Frontiers in Plant Sciences, 12. https://doi.org/10.3389/fpls.2021.779819
Cleland, R. E. (2010). Auxin and cell elongation. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_10
Collins, B., & Wein, G. (2000). Stem elongation response to neighbour shade in sprawling and upright Polygonum species. Annals of Botany, 86(4), 739–744, https://doi.org/10.1006/anbo.2000.1233
Cordoba-Novoa, H. A., Pérez-Trujillo, M. M., Rincón, B. E. C., Flórez-Velasco, N., Magnitskiy, S., & Fonseca, L. P. M. (2022). Shading reduces water deficits in strawberry (Fragaria X Ananassa) plants during vegetative growth. International Journal of Fruit Science, 22(1), 725-740. https://doi.org/10.1080/15538362.2022.2114056
Corre, W. J. (1983). Growth and morphogenesis of sun and shade plants II. The influence of light quality. Acta Bot. Neerl. 32(3), 185-202. https://natuurtijdschriften.nl/pub/540458/ABN1983032003005.pdf
Czerpak, R., Dobrzyn, P., Krotke, A., & Kicinska, E. (2002). The Effect of auxins and salicylic acid on chlorophyll and carotenoid contents in Wolffia Arrhiza (L.) Wimm. (Lemnaceae) growing on media of various Trophicities. Polish Journal of Environmental Studies, 11(3), 231-235. https://www.pjoes.com/The-Effect-of-Auxins-and-Salicylic-Acid-0,2.html
Department of Science and Technology – Philippine Atmospheric, Geophysical and Astronomical Services Administration (DOST-PAGASA) (n.d.). Climatic data. Musuan, Maramag, Bukidnon.
Dev, R., Singh, J. P., Singh, T., & Dayal, D. (2018). Effects of shade levels of on growth, and biomass production of cactus (Opuntiaficus indica (L.) Mill.). International Journal of Current Microbiology and Applied Sciences, 7, 3145-31.53. https://www.ijcmas.com/special/7/Rahul%20Dev,%20et%20al.pdf
Dewi, R. K., Suliansyah, I., Anwar, A., Syarif, A., & Rahmah, M. (2022). Effect of shading on plant growth of 4 varieties of hybrid corn. IOP Conf. Ser.: Earth Environ. Sci, 1097. https://doi.org/10.1088/1755-1315/1097/1/012011
Duan, R., Ma, Y., & Yang, L. (2018). Effects of shading on photosynthetic pigments and photosynthetic parameters of Lespedeza buergeri seedlings. IOP Conf. Series: Materials Science and Engineering, 452, 022158. https://doi.org/10.1088/1757-899X/452/2/022158
Echer, F. R., Zanfolin, P. R. L., Moreira, A. C. M., Santos, A. C. P., & Gorni, P. H. (2019). Root growth and carbohydrate partitioning in cotton subjected to shading in the initial phase. Ciência Rural, Santa Maria, 49(01), e20180749. https://doi.org/10.1590/0103-8478cr20180749
Eghbal, E., Aliniaeifard, S., Mehrjerdi, M. Z., Abdi, S., Hassani, S. B., Rassaie, T., & Gruda, N. S. (2024). Growth, phytochemical, and phytohormonal responses of basil to different light durations and intensities under constant daily light integral. BMC Plant Biol, 24, 935. https://doi.org/10.1186/s12870-024-05637-w
Elango, T., Jeyaraj, A., Dayalan, H., Arul, S., Govindasamy, R., Prathap, K., & Li, X. (2023). Influence of shading intensity on chlorophyll, carotenoid and metabolites biosynthesis to improve the quality of green tea: A review. Energy Nexus, 12, 100241. https://doi.org/10.1016/j.nexus.2023.100241
Ernst, A. A. (1999). Micro cloning: A multiple cloning technique for avocados using micro containers. Revista Chapingo Serie Horticultura, 5, 217-220. http://www.avocadosource.com/WAC4/WAC4_p217.pdf
Esgrina, F. J. O. & Tan, R. J. (2024). Response of different avocado microclonal rootstock varieties to etiolation time. Nativa, Sinop, 12(2), 274-284. https://doi.org/10.31413/nativa.v12i2.17314
Feng, Z., Zhao, J., Nie, M., Qu, F., Li, X., & Wang, J. (2023). Effects of exogenous auxin on yield in foxtail millet (Setaria italica L.). Front. Plant Sci., 13. https://doi.org/10.3389/fpls.2022.1019152
Formisano, L., Miras-Moreno, B., Ciriello, M., Zhang, L., De Pascale, S., Lucini, L., & Rouphael, Y. (2022). Between light and shading: Morphological, biochemical, and metabolomics insights into the influence of blue photoselective shading on vegetable seedlings. Front. Plant Sci. 13, 890830. https://doi.org/10.3389/fpls.2022.890830
Fu, W., Li, P., & Wu, Y. (2012). Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae, 135, 45-51. https://doi.org/10.1016/j.scienta.2011.12.004
García-Pérez, J. L., Oliet, J. A., Villar-Salvador, P., & Guzmán, J. E. (2021). Root growth dynamics and structure in seedlings of four shade tolerant Mediterranean species grown under moderate and low light. Forests, 12, 1540. https://doi.org/10.3390/f12111540
Gehlot, A., Gupta, R. K., Tripathi, A., Arya, I. D., & Arya, S. (2014). Vegetative propagation of Azadirachta indica: Effect of auxin and rooting media on adventitious root induction in mini-cuttings. Advances in Forestry Science, 1(1), 1-9. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20163103900
Ghorbel, M., Brini, F., Brestic, M., & Landi, M. (2023). Interplay between low light and hormone-mediated signaling pathways in shade avoidance regulation in plants. Plant Stress, 9, 100178. https://doi.org/10.1016/j.stress.2023.100178
Gibson, K. D., Fischer, A. J. & Foin, T. C. (2001). Shading and the growth and photosynthetic responses of Ammannia coccinnea. Weed Research, 41, 59-67. https://agronomy-rice.ucdavis.edu/sites/g/files/dgvnsk11966/.pdf
Guimarães, J. L., Hüther, C. M., Almeida, R. D. B. de, Nogueira, L. T., Carvalho, L. F. de, Borella, J., Barros Machado, T. De, & Pereira, C. R. (2020). Compound leaves of forest species present the same specific leaf area with detached leaflets or with complete leaves under shade. Semina: Agricultural Sciences , 41(5supl1), 1837–1848. https://doi.org/10.5433/1679-0359.2020v41n5supl1p1837
Halliday, K. J., Martínez-García, J. F., & Josse, E. M. (2009). Integration of light and auxin signaling. Cold Spring Harb Perspect Biol., 1(6), a001586. https://doi.org/10.1101/cshperspect.a001586
Hariyono, D., Ali, R. Y., & Nugroho, A. (2021). Increasing the growth and development of chili-pepper under three different shading condition in response to biofertilizers application. AGRIVITA Journal of Agricultural Sciences, 43(1), 198-208. https://doi.org/10.17503/agrivita.v43i1.2833
Hersch, M., Lorrain, S., de Wit, M., Trevisan, M., Ljung, K., Bergmann, S., & Fankhauser, C. (2014). Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis, Proc. Natl. Acad. Sci., 111(17), 6515-6520. https://doi.org/10.1073/pnas.1320355111
Heuvel, J. E. V., Proctor, J. T., Fisher, K. H., & Sullivan, J. A. (2004). Shading affects morphology, dry-matter partitioning, and photosynthetic response of greenhouse-grown `Chardonnay' grapevines. HortScience HortSci, 39(1), 65-70. https://doi.org/10.21273/HORTSCI.39.1.65
Hiti-Bandaralage, J., Hayward, A., & Mitter, N. (2017). Micropropagation of avocado (Persea americana Mill.). American Journal of Plant Sciences, 8, 2898-2921. https:doi.org/10.4236/ajps.2017.811197
Hossain, M. A. & Kamaluddin, M. (2005). Lateral shading of stockplants enhances rooting performance of guava (Psidium guajava L.) cuttings. Journal of Applied Horticulture, 7(2), 83-86. https://www.horticultureresearch.net/jah/2005_7_2_83_86.PDF
Hunt, M. A., Trueman, S. J. & Rasmussen, A. (2011). Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings. New Forests, 41, 349–360. https://doi.org/10.1007/s11056-010-9227-7
Hussain, S., Iqbal, N., Pang, T., Khan, M. N., Liu, W., & Yang, W. (2019). Weak stem under shade reveals the lignin reduction behavior. Journal of Integrative Agriculture, 18(3), 495-505. https://doi.org/10.1016/S2095-3119(18)62111-2
Ibtissem, S., Ammar, F., & Amira, F. (2024). Analysis of the effect of the use of a phytohormone on the growth of avocado seedlings (Persea americana Mill.). case of (Salix babylonica L.). GRAVIDA, 63(4), 104-112. https://doi.org/10.5281/zenodo.11076079
Ibukun, E. O. (2016). Studies on hormonal effects on rooting of marcotting and stem-cuttings of Akee apple (Blighia sapida K. D. Koenig). Notulae Scientia Biologicae, 8(4), 468–471. https://doi.org/10.15835/nsb849845
Iglesias, M. J., Sellaro, R., Zurbriggen, M. D. & Casal, J. J. (2018). Multiple links between shade avoidance and auxin networks. Journal of Experimental Botany, 69(2), 213–228. https://doi.org/10.1093/jxb/erx295
Jiang, Z., Liu, D., Wang, T., Liang, X., Cui, Y., Liu, Z., & Li, W. (2020). Concentration difference of auxin involved in stem development in soybean, Journal of Integrative Agriculture, 19(4), 953-964, https://doi.org/10.1016/S2095-3119(19)62676-6
Jin, W., Ji, Y., Larsen, D. H., Huang, Y., Heuvelink, E., & Marcelis, L. F. M. (2023). Gradually increasing light intensity during the growth period increases dry weight production compared to constant or gradually decreasing light intensity in lettuce. Scientia Horticulturae, 311, 111807. https://doi.org/10.1016/j.scienta.2022.111807
Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J. (2013). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 54, 501–509. https://doi.org/10.1007/s13580-013-0109-8
Kanmegne, G., Mbouobda, H. D., Fotso, Kamtat, G. F., & Omokolo, D. N. (2017). Interaction of stockplants shading and exogenous auxin on the propagation of Cola anomala K. Schum (Malvaceae) by cuttings. South African Journal of Botany, 112, 246-252. https://doi.org/10.1016/j.sajb.2017.06.005
Kappel, F., & Flore, J. A. (1983). Effect of shade on photosynthesis, specific leaf weight, leaf chlorophyll content, and morphology of young peach trees. J. Amer. Soc. Hort. Sci., 108(4), 541-544. https://journals.ashs.org/jashs/downloadpdf/view/journals/jashs/108/4/article-p541.pdf
Karatas, I., Ozturk, L., Ersahin, Y., & Okatan, Y. (2010). Effects of auxin on photosynthetic pigments and some enzyme activities during dark-induced senescence of Tropaeolum leaves. Pak. J. Bot., 42(3), 1881-1888. https://www.pakbs.org/pjbot/PDFs/42(3)/PJB42(3)1881.pdf
Kasana, M. I., Khan, R. I. Khan, N.U. Ali, M.N.S. Mumtaz, S. Rasheed, S., & Zaman, M.Q. (2024). Impact of grafting techniques on vegetative growth of different avocado cultivars. Pakistan Journal of Agricultural Research, 37(1), 39-47.
Kaur, S. (2017). eval__uation of different doses of indole-3-butyric acid (IBA) on the rooting, survival and vegetative growth performance of hardwood cuttings of Flordaguard peach (Prunus persica L. Batch). Journal of Applied and Natural Science, 9(1), 173-180. https://core.ac.uk/download/pdf/158353369.pdf
Khajehpour, G., Jam’eizadeh, V., & Khajehpour, N. (2014). Effect of different concentrations of IBA (Indulebutyric Acid) hormone and cutting season on the rooting of the cuttings of olive (Olea Europaea Var Manzanilla. International Journal of Advanced Biological and Biomedical Research, 2(12), 2920-2924. https://www.ijabbr.com/article_11599.pdf
Khan, M. A., Wang, Y., Muhammad, B., Uddin, S., Saeed, A., Khan, D., Ali, M., Saeed, S., & Jia, Z. (2024). Morpho-physiological and phytohormonal changes during the induction of adventitious root development stimulated by exogenous IBA application in Magnolia biondii Pamp. Brazilian Journal of Biology, 24, e255664. https://doi.org/10.1590/1519-6984.255664
Khan, M. N. & Nabi, G. (2023). Role of auxin in vegetative growth, flowering, yield and fruit quality of horticultural crops – a review. Pure Appl. Biol., 12(2), 1234-1241. http://dx.doi.org/10.19045/bspab.2023.120126
Khandaker, M. M., Saidi, A., Badaluddin, N. A., Yusoff, N., Majrashi, A., Alenazi, M. M., Saifuddin, M., Alam, M. A., & Mohd, K. S. (2022). Effects of indole-3-butyric acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu. Brazilian Journal of Biology, 82, e256277. https://doi.org/10.1590/1519-6984.7
Khawas, E., & Upadhyay, S. (2022). Effect of plant growth regulators on rooting of avocado (Persea americana Mill.) cuttings in Sikkim. Bhartiya Krishi Anusandhan Patrika. 37(2), 157-162. https://doi.org/10.18805/BKAP413
Krupinski, P., & Jönsson, H. (2010). Modeling auxin-regulated development. Cold Spring Harb Perspect Biol., 2(2), a001560. https://doi.org/10.1101/cshperspect.a001560
Kyozuka, J. (2023). Flowering time and reproduction of plant hormones in growth regulation. Global Journal of Plant and Soil Sciences, 7(4), 001-002. https://www.internationalscholarsjournals.com/articles/flowering-.pdf
Lahak, M., Alon, E., Chen, A., & Rubinovich, L. (2024). Covering young avocado ‘Hass’ trees with high-density shading nets during the winter mitigates frost damage and improves tree performance. Trees 38, 327–338. https://doi.org/10.1007/s00468-023-02485-3
Li, W., Ma, X., Wang, S., Huang, W., & Jiang, M. (2024). The leafy-stem-buried etiolation contributed to the high efficiency of rootstock vegetative propagation in avocado (Persea americana). Horticulturae, 10(7), 770. https://doi.org/10.3390/horticulturae10070770
Liphan, S. & Detpiratmongkol, S. (2020). Influence of shading levels on growth, yield and andrographolide content of kalmegh. Plant Archives, 20(1), 1349-1354. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20219822728
Lovatt, C. J. (2005). Plant growth regulators for avocado production. California Avocado Society 2005 Yearbook, 88, 81-91. http://www.avocadosource.com/CAS_Yearbooks/CAS_88_2005/CAS_2005_V88_PG_81-91.pdf
Luo, W. G., Liang, Q. W., Yi, S., Huang, C., Mo, B. X., Yu, Y., & Xiao, L. T. (2023). Auxin inhibits chlorophyll accumulation through ARF-IAA14-mediated repression of chlorophyll biosynthesis genes in Arabidopsis. Front. Plant Sci., 14. https://doi.org/10.3389/fpls.2023.1172059
Miotto, Y. E., da Costa, C. T., Offringa, R., Kleine-Vehn, J., & Maraschin, Fd. S. (2021) Effects of light intensity on root development in a d-root growth system. Front. Plant Sci., 12, 778382. https://doi.org/10.3389/fpls.2021.778382
Mishra, S., Joshi, B., Dey, P., Nayak, P., & Guru, S. K. (2020). Effect of shading on growth, and reproductive biology of Phalaris minor Retz. Journal of Pharmacognosy and Phytochemistry, 9(1), 803-807. https://www.phytojournal.com/archives/2020/vol9issue1/PartN/8-6.pdf
Mroue, S., Simeunovic, A., & Robert, H. S. (2017). Auxin production as an integrator of environmental cues for developmental growth regulation, Journal of Experimental Botany, 69(2), 201–212, https://doi.org/10.1093/jxb/erx259
Muhidin, Syam’un, E., Kaimuddin, Musa, Y., Sadimantara, G. R., Usman, Leomo, S., & Rakian, T. C. (2018). The effect of shade on chlorophyll and anthocyanin content of upland red rice. IOP Conf. Ser.: Earth Environ. Sci., 122, 012030. https://doi.org/10.1088/1755-1315/122/1/012030
Muller, M. & Munne-Bosch, S. (2021). Hormonal impact on photosynthetic and photoprotection in plants. Plant Physiology, 185, 1500-1522. https://doi.org/10.1093/plphys/kiaa119
Muttaleb, Q., Abdullah, T., Rashid, A. & Hassan, S. (2017). Rooting of stem cuttings with different indole 3 butyric acid (IBA) treatments and development of micropropagation protocol for Piper betle L. node culture. American Journal of Plant Sciences, 8(12), 3084-3100. https://doi.org/10.4236/ajps.2017.812208
Novak, S. D., & Whitehouse, G. A. (2013). Auxin regulates first leaf development and promotes the formation of protocorm trichomes and rhizome-like structures in developing seedlings of Spathoglottis plicata (Orchidaceae), AoB PLANTS, 5, pls053. https://doi.org/10.1093/aobpla/pls053
Olatunji, D., Geelen, D., & Verstraeten, I. (2017). Control of endogenous auxin levels in plant root development. Int J Mol Sci., 18(12), 2587. https://doi.org/10.3390/ijms18122587
Oliveira Gondim, A. R. De, Puiatti, M., Finger, F. L., & Cecon, P. R. (2018). Artificial shading promotes growth of taro plants. Pesq. Agropec. Trop., Goiânia, 48(2), 83-89. https://www.scielo.br/j/pat/a/3KftcVVpdf
Oumahmoud, M., Alouani, M., Elame, F., Tahiri, A., Bouharroud, R.;, Qessaoui, R., El Boukhari, A., Mimouni, A., & Koufan, M. (2023). Effect of shading, substrate, and container size on Argania spinosa growth and cost–benefit analysis. Agronomy, 13(10), 2451. https://doi.org/10.3390/agronomy131
Pacheco-Villalobos, D., Díaz-Moreno, S. M., van der Schuren, A., Tamaki, T., Kang, Y. H., Gujas, B., Novak, O., Jaspert, N., Li, Z., Wolf, S., Oecking, C., Ljung, K., Bulone, V., & Hardtke, C. S. (2016). The effects of high steady state auxin levels on root cell elongation in Brachypodium. The Plant Cell, 28(5), 1009–1024, https://doi.org/10.1105/tpc.15.01057
Pacholczak, A., Jedrzejuk, A., & Sobczak, M. (2017). Shading and natural rooting biostimulator enhance potential for vegetative propagation of dogwood plants (Cornus alba L.) via stem cuttings. South African Journal of Botany, 109, 34-41. https://doi.org/10.1016/j.sajb.2016.12.009
Pantoja-Guerra, M., Valero-Valero, N., & Ramirez, C. A. (2023).Total auxin level in the soil–plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chem. Biol. Technol. Agric. 10(6). https://doi.org/10.1186/s40538-022-00370-8
Paradiso, R., & Proietti, S. (2022). Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J Plant Growth Regul, 41, 742–780. https://doi.org/10.1007/s00344-021-10337-y
Perrot-Rechenmann, C. (2010). Cellular responses to auxin: Division versus expansion. Cold Spring Harb Perspect Biol, 2(5), a001446. https://doi.org/10.1101/cshperspect.a001446
Rastogi, A., Siddiqui, A., Mishra, B. K., Srivastava, M., Pandey, R., Misra, P., Singh, M., & Shukla, S. (2013). Effect of auxin and gibberellic acid on growth and yield components of linseed (Linum usitatissimum L.). Crop Breeding and Applied Biotechnology 13, 136-143. https://www.scielo.br/j/cbab/a/ntyRPkCdBbTdLwBscNqYWKC/
Sassi, M., Ruberti, I., Vernoux, T., & Xu, J. (2013). Shedding light on auxin movement: Light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signaling & Behavior, 8(3). https://doi.org/10.4161/psb.23355
Shindre, P., Kumar, Y., Mavarkar, N. S., Ganapathi, M., & Chaitanya, H. S. (2023). Effect of growth stimulants on growth and survivability of avocado (Persea americana Mill.) grafts under hill zone of Karnataka. The Pharma Innovation Journal, 12(2), 3479-3481. https://www.thepharmajournal.com/archives/2023/vol12issue2/PartAQ/12-1-119-743.pdf
Sora, S. A. (2023). eval__uation of avocado (Persea americana) for growth and yield at Teppi, Southwestern Ethiopia. International Journal of Fruit Science, 23(1), 46–50. https://doi.org/10.1080/15538362.2023.2178595
Sosnowski, J., Truba, M., & Vasileva, V. (2023). The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture, 13(3), 724. https://doi.org/10.3390/agriculture13030724
Stefancic, M., Stampar, F., & Osterc, G. (2005). Influence of IAA and IBA on root development and quality of Prunus ‘GiselA 5’ leafy cuttings. HortScience, 40(7), 2052-2055. https://journals.ashs.org/downloadpdf/journals/hortsci/40/7/article-.pdf
Subba, S., Gurung, S., Mahato, S. K., Thapa, B., & Chhetri, B. (2023). Introduction of avocado (Persia americana) fruits in Eastern Himalaya of India: A review. International Journal of Economic Plants, 10, 127–131. https://doi.org/10.23910/2/2023.0507a
Sulaiman, S., Yusuf, N. A., & Awal, A. (2020). Effect of plant growth regulators on in vitro culture of pineapple (Ananas comosus L. Merr) MD2 variety. Food Research, 4(5), 110-114. https://doi.org/10.26656/fr.2017.4(S5).017
Sun, J. Li, H., Chen, H., Wang, T., Quan, J., & Bi, H. (2023). The effect of hormone types, concentrations, and treatment times on the rooting traits of Morus ‘Yueshenda 10’ softwood cuttings. Life, 13, 1032. https://doi.org/10.3390/life13041032
Supriyanto, E. A., & Yulianto, W. (2022). The effect of auxin growth regulatory concentrations and entress length on the growth of avocado plants. JURNAL INNOFARM: Jurnal Inovasi Petanian, 24(1), 75-86. https://doi.org/10.33061/innofarm.v24i1.6891
Takahashi, H. (2013). Auxin biology in roots. Plant Root, 7, 49-64. https://doi.org/10.3117/PLANTROOT.7.49
Tang, W., Guo, H., Baskin, C.C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tao, Q., Zhao, Y., & Sun, J. (2022). Effect of light intensity on morphology, photosynthesis and Carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants , 11, 1688. https://doi.org/10.3390/plants11131688
Tanimoto, E. (2005). Regulation of root growth by plant hormones—roles for auxin and gibberellin. Critical Reviews in Plant Sciences, 24(4), 249–265. https://doi.org/10.1080/07352680500196108
Thimann, K. V. (2008). Auxins and the inhibition of plant growth. Biological Reviews of the Cambridge Philosophical Society, 14(3), 314-337. https://doi.org/10.1111/j.1469-185X.1939.tb00937.x
Tinyane, P. P., Soundy, P., & Sivakumar, D. (2018). Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Scientia Horticulturae, 230, 43-49. https://doi.org/10.1016/j.scienta.2017.11.020
Tivendale, N. D. & Millar, A. H. (2022). How is auxin linked with cellular energy pathways to promote growth? New Phytol., 233(6), 2397-2404. https://doi.org/10.1111/nph.17946
Valio, I. F. M. (2001). Effects of shading and removal of plant parts on growth of Trema micrantha seedlings. Tree Physiology, 21(1), 65-70. https://doi.org/10.1093/treephys/21.1.65
Vielba, J. M., Vidal, N., Ricci, A., Castro, R., Covelo, P., San-Jose, M. C., Sanchez, C. (2020). Effects of auxin and urea derivatives on adventitious rooting in chestnut and oak microshoots. Israel Journal of Plant Sciences, 67(1-2), 52-68 https://dx.doi.org/10.1163/22238980-20191113
Villalobos, F. J., Soriano, A., & Fereres, E. (1992). Effects of shading on dry matter partitioning and yield of field-grown sunflower. European Journal of Agronomy, 1(2), 109-115. https://doi.org/10.1016/S1161-0301(14)80008-7
Wang, L., & Ruan, Y. (2013). Regulation of cell division and expansion by sugar and auxin signaling. Frontiers in Plant Science, 4(163), 1-9. https://doi.org/10.3389/fpls.2013.00163
Wang, P., Yang, L., Sun, X., Shi, W., Dong, R., Wu, Y., & Mi, G. (2024). Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3? and NH4+ supply. Journal of Integrative Agriculture, 23(3), 1048-1060. https://doi.org/10.1016/j.jia.2023.07.012
Wang, X., Chen, G., Du, S., Wu, H., & Fu, R. (2021). Light Intensity Influence on Growth and Photosynthetic Characteristics of Horsfieldia hainanensis. Front. Ecol. Evol., 9, https://doi.org/10.3389/fevo.2021.636804
Wang, Z., Townsend, P. A., Kruger, E. L., & Schweiger, A. K. (2024). Quantifying foliar trait variation and covariation in sun and shade leaves using leaf spectroscopy in eastern North America. Forest Ecosystems, 11, 100230. https://doi.org/10.1016/j.fecs.2024.100230
Williams, A. A., Samuel, A., Satoru, T., Jacob, U., Ofosuhene, S. H., Samuel, A. P., Musah, B., & Oduro, N. G. (2024). Philippine Journal of Science. 153(1), 113-120. https://philjournalsci.dost.gov.ph/images/pdf/pjs_pd.pdf
Wu, L., Zhang, W., Ding, Y., Zhang, J., Cambula, E. D., Weng, F., Liu, Z., Ding, C., Tang, S., Chen, L., Wang, S., & Li, G. (2017). Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in Japonica rice (Oryza sativa L.). Front. Plant Sci., 8, 881. https://doi.org/10.3389/fpls.2017.00881
Wu, Y., Gong, W. & Yang, W. (2017). Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci Rep, 7, 9259. https://doi.org/10.1038/s41598-017-10026-5
Xie, X., Cheng, H., Hou, C., & Ren, M. (2022). Integration of light and auxin signaling in shade plants: From mechanisms to opportunities in urban agriculture. Int. J. Mol. Sci., 23, 3422. https://doi.org/10.3390/ijms23073422
Xue, G., Wu, J., Zhou, B., Zhu, X., Zeng, J., Ma, Y., Wang, Y., & Jia, H. (2023). Effects of shading on the growth and photosynthetic fluorescence characteristics of Castanopsis hystrix seedlings of top community-building species in southern subtropical China. Forests, 14, 1659. https://doi.org/10.3390/f14081659
Yang, C., & Li, L. (2017). Hormonal regulation in shade avoidance. Front. Plant Sci., 8, 1527. https://doi.org/10.3389/fpls.2017.01527
Yang, F., Fan, Y., Wu, X., Cheng, Y., Liu, Q., Feng, L., Chen, J., Wang, Z., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K., & Yang, W. (2018). Auxin-to-gibberellin ratio as a signal for light intensity and quality in regulating soybean growth and matter partitioning. Front. Plant Sci. 9, 56. https://doi.org/10.3389/fpls.2018.00056
Yang, M., Liu, M., Lu, J., & Yang, H. (2019). Effects of shading on the growth and leaf photosynthetic characteristics of three forages in an apple orchard on the Loess Plateau of eastern Gansu, China. PeerJ. https://doi.org/10.7717/peerj.7594
Yoon, A., Oh, H. E., Kim, S. Y., & Park, Y. G. (2021). Plant growth regulators and rooting substrates affect growth and development of Salix koriyanagi cuttings. Rhizosphere, 20, 100437. https://doi.org/10.1016/j.rhisph.2021.100437
Yuan, Y., Mei, L., Wu, M., Wei, W., Shan, W., Gong, Z., Zhang, Q., Yang, F., Yan, F., Zhang, Q., Luo, Y., Xu, X., Zhang, W., Miao, M., Lu, W., Li, Z., & Deng, W. (2018). SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development, Journal of Experimental Botany, 69(22), 5507–5518. https://doi.org/10.1093/jxb/ery328
Zain, N. M., Zainal, M. D., Abu Bakar, T. H. S. T., Zakaria, S., Mukhtar, N. K., & Naher, L. (2022). Efficacy of auxin foliar application on the growth and yield of green Romaine (Lactuca sativa L. var. Jericho) grown under nutrient film technique (NFT) hydroponic system. IOP Conf. Series: Earth and Environment Science, 1102. https://doi.org/10.1088/1755-1315/1102/1/012012
Zhang, R., Shan, F., Wang, C., Yan, C., Dong, S., Xu, Y., Gong, Z., Ma, C. (2020). Internode elongation pattern, internode diameter and hormone changes in soybean (Glycine max) under different shading conditions. Crop and Pasture Science, 71, 679-688. https://doi.org/10.1071/CP20071
Zhao, X., Yu, H., Wen, J., Wang, X., Du, Q., Wang, J., & Wang, Q. (2016). Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. Journal of Integrative Agriculture, 15(4), 785-794. https://doi.org/10.1016/S2095-3119(15)61246-1
Zheng, Y., Zou, J., Lin, S., Jin, C., Shi, M., Yang, B., Yang, Y., Jin, D., Li, R., Li, Y., Wen, X., Yang, S., & Ding, X. (2023) Effects of different light intensity on the growth of tomato seedlings in a plant factory. PLoS ONE 18(11), e0294876. https://doi.org/10.1371/journal.pone.0294876
Zhiyu, M., Shimizu, H., Moriizumi, S., Miyata, M., Douzono, M., & Tazawa, S. (2007). Effect of light intensity, quality and photoperiod on stem elongation of chrysanthemum cv. Reagan. Environmental Control in Biology, 45(1), 19-25. https://doi.org/10.2525/ecb.45.19
Zhou, Q., Zhao, F., Zhang, H., & Zhu, Z. (2022). Responses of the growth, photosynthetic characteristics, endogenous hormones and antioxidant activity of Carpinus betulus L. seedlings to different light intensities. Front. Plant Sci., 13, 1055984. https://doi.org/10.3389/fpls.2022.1055984