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Abstract. Mwaluseke ML, Mwakalukwa EE, Maliondo SMS. 2023. Volume and aboveground biomass models for a dry evergreen 

montane forest in Tanzania. Asian J For 7: 45-53. Models available for accurately estimating trees and shrubs' volume and aboveground 
biomass from dry evergreen montane forests in Tanzania are largely lacking. Therefore, this study was conducted to develop volume, 
and aboveground biomass models for a dry evergreen montane forest of Lendikinya Forest Reserve found in Northern Tanzania. A total 
of thirty sample trees and shrubs with a diameter range of 5-58.5 cm were destructively harvested and used in this study. Specifically, 
the study developed (i) the height-diameter model and (ii) the total volume and aboveground biomass models. The following height, 
volume, and biomass models appear to be suitable for estimating tree height, volume, and biomass of tree and shrub species found in the 
study site: Height (m) =2.3249 + 6.6101/DBH + 0.2847DBH (R2 = 0.78, RMSE = 1.79, AIC = 164.37), ln(Volume, m3) = -9.845 + 
1.915 ln(DBH) + 1.089ln(Ht) (R2 = 0.97, RMSE = 0.296, AIC = -144.18) and ln(Biomass, kg) = -1.666 + 0.853ln(WD x DBH2 x Ht) 

(R2 = 0.95, RMSE = 0.324, AIC = 224.13). Both models yielded low bias, hence indicating an excellent fit. These models will be useful 
in understanding the condition of the forest and the potential of this forest in storing carbon hence, the possibility of benefiting from the 
ongoing negotiations of REDD+ schemes for payment for avoided deforestation and degradation through sustainable management of the 
reserve.  
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INTRODUCTION 

There is increasing interest in understanding the 

contribution of forest ecosystems in mitigating climate 

change effect (Lorenz and Lal 2010; Njana et al. 2018; 

Mauya et al. 2019; Leley et al. 2022; Mauya et al. 2022; 

Nugroho et al. 2022). That can be achieved by quantifying 

the carbon currently locked up in these ecosystems (Njana 
et al. 2018; Mauya et al. 2019; Leley et al. 2022). The 

estimation or quantification of carbon stocks is based on 

allometric equations developed in the same forests or 

similar vegetation types in cases where there are no 

existing models for such a specific forest (Chave et al. 

2005; Henry et al. 2011; Ngomanda et al. 2014; 

Mwakalukwa et al. 2014). However, it is generally 

accepted that indirect methods using allometric volume 

equations, form factor and biomass expansion factors 

and/or with basic wood density (Chave et al. 2014; Njana 

et al. 2017) and models developed from other vegetation 
types to some extent, do not provide reliable estimates of 

carbon stocks in the studied vegetation (Henry et al. 2011; 

Chave et al. 2014; Djomo et al. 2016; Njana et al. 2018; 

Mauya et al. 2019). Specific models for each vegetation 

type are more precise in estimating biomass hence carbon 

stocks of the particular forest compared to the generalized 

models developed from other or similar vegetation types 

(Brown 2002; Mugasha et al. 2013; Chave et al. 2014; 

Daba and Soromessa 2019; Mauya et al. 2019; Asrat et al. 

2020). Therefore, it is encouraged that locally specific 

models be developed to improve the accuracy and 

predictive capacity of the models using samples obtained 

from the same vegetation types (Mugasha et al. 2013; 

Mauya et al. 2014; Mwakalukwa et al. 2014; Feyisa et al. 

2018; Njana et al. 2018; Asrat et al. 2020). That is 

especially very important when the country (project) is 
expecting to benefit from the ongoing initiative of payment 

for Reducing Emission from Deforestation and 

Degradation (REDD+) (Njana et al. 2018; Mauya et al. 

2019; Mauya et al. 2022).  

According to Mauya et al. (2019), countries are 

required to develop four key components if they aim to 

undertake REDD+ activities and to be eligible for financial 

compensation (FAO 2014): (i) a national strategy or action 

plan; (ii) a national forest reference emission level (FREL) 

and/or forest reference level (FRL); (iii) a robust and 

transparent national forest monitoring system for 
Measurement, Reporting and Verification (MRV) of the 

REDD+ activities; and (iv) a system for providing 

information on how the safeguards are addressed or 

respected. The Tanzania mainland has up-to-date national 

forest inventory data collected through a National Forest 

Resources Monitoring and Assessment (NAFORMA) 

Project between 2009 and 2014 (MNRT 2015). Those data 

could serve to address the above requirements. In addition, 

the availability of as many up to date allometric models to 

assist in quantifying existing carbon stocks and estimating 
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potential emissions is necessary.  

In Tanzania, most of these models have been developed 

for different vegetation types (Malimbwi et al. 2016). 

Specifically, models have been developed for Miombo 

forests (Mugasha et al. 2013; Mauya et al. 2014; 

Mwakalukwa et al. 2014; Manyanda et al. 2019), mangrove 

forests (Njana et al. 2016a,b), lowland forests (Mugasha et 

al. 2016a), mountain humid/rain forest (Masota et al. 2014; 

Masota et al. 2015), thicket and associated trees (Makero et 

al. 2016), Acacia-Commiphora woodlands (Mugasha et al. 
2016b) and plantation forests (Mugasha et al. 2016c; 

Zahabu et al. 2016). However, no volume and biomass 

models have been developed for dry evergreen montane 

forests in Tanzania, unlike other areas such as Ethiopia that 

have been studied (Tetemke et al. 2019; Asrat et al. 2020). 

This study intended to provide robust stand volume and 

biomass models for dry evergreen montane forests of 

Lendikinya Forest Reserve (LFR) in Northern Tanzania to 

assist in better planning and management. Stand-level 

models can also help to understand the contribution of the 

forest in mitigating climate change based on future REDD+ 
initiatives in Tanzania, particularly for effective 

monitoring, reporting, and verification of Greenhouse Gas 

(GHG) emissions. Therefore, the specific objective of the 

study was to develop volume and aboveground biomass 

models of trees and shrubs with a diameter ≥ 5 cm found in 

the LFR. The models would be used for dry evergreen 

montane forests in that region. 

MATERIALS AND METHODS 

Study area description  

Lendikinya Forest Reserve (LFR), with a total area of 

3,689 ha and gazetted in 1969 (JB No. 1854), is a dry 
evergreen montane forest located in the eastern part of 

Monduli District (latitudes 2° and 4° S and longitude 36° 

and 37° E) in Arusha Region, Tanzania (Meindertsma and 

Kessler 1997) (Figure 1). Monduli Local Government 

Authority manages the LFR. Generally, the district's 

climate is arid to semi-arid, with average rainfall between 

400 to 900 mm per annum and wide variations in relief and 

soil types (UNDP 2003). The weather range from as low as 

11.5°C in July to a maximum temperature of up to 29°C in 

December. For the lower altitudes in May, humidity during 

the night reaches 100%. LFR is surrounded by four 

villages: Lashaine, Monduli Juu, Alkatani, and Lendikinya. 
Moreover, the economic activities of the people of the area 

depend on livestock, agro-pastoralism, and tourism. LFR 

forms part of the rift valley characterized by depressions. 

The woodland harbors large wild animal species such as 

Loxodonta africana (Elephants), Giraffa camelopardalis 

(Giraffe), Syncerus caffer (Buffaloes), and a variety of 

birds and insects (Meindertsma and Kessler 1997; UNDP 

2003). 

Field sampling 

The field survey was conducted in May-June 2014. A 

total of 30 sample trees and shrubs (Table 1) with a 

diameter range of 5-58.5 cm were selected based on species 

composition and diameter classes of species available in 

the forest (Mwaluseke 2015, unpublished data). The 

selection ratio was five trees to 1 shrub (Chaturvedi and 

Raghubanshi 2012; Mwakalukwa et al. 2014; Malimbwi et 

al. 2016; Asrat et al. 2020; Teshome et al. 2022). Few 

shrubs were selected because they possessed lower 

diameter size classes and are the least contributor to total 

volume and biomass than the large-sized trees (Asrat et al. 

2020; Teshome et al. 2022). The selected trees and shrubs 
species were first identified before they were felled (Table 

2) (Mwakalukwa et al. 2014; Malimbwi et al. 2016). After 

identification, the trees were measured for diameter at 

breast height (DBH at 1.3 m) using diameter tape/caliper to 

the nearest 0.1 cm (Teshome et al. 2022). The trees were 

also measured for their height using a Suunto hypsometer. 

In addition, height measurements were also taken for the 

three selected stems (small, medium, and largest in terms 

of diameter) using the same instrument (a Suunto 

hypsometer). Next, the tree was felled 10 cm from the 

ground level using a chainsaw. Then, using a tape measure, 
the total height of the felled tree was measured before it 

was segregated into different components: stems, branches, 

and leaves (Mugasha et al. 2013; 16a). The upper diameter 

limit selection depends on the wood's utilization 

(Mwakalukwa et al. 2014). In the study area, the important 

use of the wood was mainly for poles and timber 

production, with few tree species used for charcoal 

production, mainly utilizing the top diameter of the 5 cm 

portion. Therefore, both volume and biomass models were 

developed based on DBH ≥ 5 cm. 

For each felled sample tree, twigs and leaves were 
removed from branches and tied into bundles (piles) 

(Mandal et al. 2013; Mwakalukwa et al. 2014; Mugasha et 

al. 2016a; Asrat et al. 2020). Depending on their weights, 

stem and branch billets were tied in bundles and weighed 

separately to obtain green weights, and eventually, the 

green weight of a whole tree was obtained by summating 

the weight of individual tree sections (Mwakalukwa et al. 

2014; Mugasha et al. 2016a). The subsamples were then 

weighed using a Portable Digital scale, while large and 

heavy billets or piles were weighed using a conventional 

scale (Asrat et al. 2020). For dry weight estimation, a 

subsample from each pile of twigs and leaves and two stem 
discs (one from the stem at 1.3 cm aboveground and one 

from a branch at approximately 30 cm from the point of 

branching) were obtained and weighed for green weight in 

the field and taken to the laboratory for oven-dry weight 

determination (Mandal et al. 2013; Asrat et al. 2020). All 

samples were carefully marked for respective species 

names, tree numbers, and DBH. The lightweight data was 

packed in envelopes for laboratory analysis. Furthermore, 

to facilitate biomass weighing and the construction of 

volume models, each of the stem and branch sections of the 

felled trees was trimmed into billets of length 1-2.5 m and 
measured at mid-diameters (dm) (Malimbwi et al. 1994; 

Mugasha et al. 2013; Asrat et al. 2020).  
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Figure 1. Location of Lendikinya Forest Reserve in Monduli District, Arusha, Tanzania 

 
 

Laboratory analyses 

In the laboratory, all large disc samples were split into 

small blocks and marked. Then, all block subsamples were 
soaked in water for seven days until they were saturated 

(Malimbwi et al. 1994; Mugasha et al. 2013). After that, 

the water displacement method was used to determine the 

green volume of each subsample (i.e., small discs and 

blocks) (Chaturvedi and Raghubanshi 2012). Eventually, 

the subsamples were oven-dried at a standard temperature 

of 103 ± 2°C for four and half days to a constant weight, 

and their oven-dry weight was recorded (Mandal et al. 

2013; Mwakalukwa et al. 2014; Asrat et al. 2020). Wood 

basic density (g cm-3) was determined as the ratio of oven-

dry weight to fresh volume, while dry biomass was 
computed by multiplying the fresh weight with oven-dry 

weight to green weight ratio (Chaturvedi and Raghubanshi 

2012; Mwakalukwa et al. 2014; Njana et al. 2016a,b; Asrat 

et al. 2020). 

Data preparation 

Before the model development, data were assessed for 

additivity (Mugasha et al. 2016a). The additivity concept 

was attained by summing the biomass and volume 

components (stem wood, branches, and leaves). Thus, 

ensuring that the total biomass and volume obtained 

equaled the total biomass and volume predicted by 

allometric equations (Asrat et al. 2020; Teshome et al. 
2022). Next, for each tree, the volume of individual stems 

and branch billets was calculated using Huber's formula 

(V=π Ld2
m/4; where dm= Billet's mid-diameter, L=Billet 

length, π = Pai, V= billet volume). Then, the total volume 

of each sample tree/shrub with a diameter ≥ 5 cm was 

calculated by adding the individual volume of stem and 

branch billet sections. This dataset was used to develop 
mixed-species volume models (Mwakalukwa et al. 2014; 

Mauya et al. 2014).  

Dry biomass (kg) was estimated as the product of 

estimated biomass ratios (oven-dry to fresh weights) for 

each subsample (i.e., stem and branch discs and leaves) and 

their corresponding fresh weights (kg) measured in the 

field. The total aboveground biomass of each tree was the 

sum of individual oven-dry biomass of stem, branch, and 

leaves (Mugasha et al. 2013; Mugasha et al. 2016a; Asrat et 

al. 2020). The resulting dataset was used to develop 

aboveground mixed-species-biomass models.  

Statistical analysis 

Before volume and biomass models were developed, 

height models were developed to determine the heights of 

unmeasured live trees and shrubs (Mwakalukwa et al. 

2014; Mugasha et al. 2016a). A total of 139 of both felled 

and unfelled sample trees and shrubs were mixed to capture 

their variations and accuracy in the estimates. The height 

dataset was then fitted to the formulated models, as shown 

in Table 3. DBH was the only predictor variable in the 

height models, while height (H) was the dependent 

variable.  

For the volume and biomass models development, 
logarithmic linear models formulated and used elsewhere 

(Malimbwi et al. 1994; Mwakalukwa et al. 2014) in other 

forests for the prediction of either volume or biomass or 

both were also adopted in this study (Table 4). In these 
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models, both dependent and independent (i.e., DBH and 

height) variables were natural logarithmic transformed to 

attain linearity. The transformation was also intended to 

reduce he heteroscedasticity's effect and obtain models that 

fit the dataset well.  

Model 5 in (Table 4) partly resembled model 2, but 

model 5 further included average wood basic density, 

intended to capture its contribution to biomass prediction 

by the model (Chaturvedi and Raghubanshi 2012; Njana et 

al. 2016a,b). In transformed regression equations, the 
analysis of the models was preceded by plotting dependent 

variables (volume and biomass) against each of the 

independent variables (DBH and height) to determine the 

range and likely shape of the functional relationship and 

the heteroscedasticity assessment (Mwakalukwa et al. 

2014). Since logarithmic transformation leads to another 

problem of geometric mean instead of arithmetic mean in 

the predicted output, a correction factor "CF" following 

Baskerville (1972) was used. Those equations ((CF = 

exp(MSE/2) where MSE = Mean Square Error of the 

regression, CF = A Correction Factor, Exp = Exponential 
function)) were used to solve the problem by multiplying it 

with the predicted output after back-transformed.  

The statistical tests employed in evaluating the models 

regarding the goodness of fit criteria follow Parresol (1999) 

and Mandal et al. (2013). According to FAO (2012), the 

most frequently used statistical tests in determining the 

performance of a model were: coefficient of determination 

(R2), Root Mean Square Error (RMSE), and Akaike's 

Information Criterion (AIC), all of which were computed 

by the following equations (R2 = 1-RSS/TSS, where; R2 = 

coefficient of determination, RSS = Residual sum of 

squares, TSS = Total Sum of Squares; RMSE = √RSS/n- 
Ψ, Where; n = Number of observations in a data model, (Ψ) 

= Number of parameters present in a model, RSS = 

Residual sum of squares, RMSE = Root Mean Square 

Error, and AIC = n(lnRSS/n)+2k, Where; n = Number of 

data points (observations) in a given equation, ln = Natural 

logarithm, RSS = Residual Sum of Squares, k = Number of 

parameters in a given equation, AIC = Akaike's 

Information Criterion) respectively. For each category 

available, the best model selected had higher R2 but lower 

RMSE and AIC values (Parresol 1999; Mugasha et al. 

2013; Asrat et al. 2020).  

 
Table 1. Distribution of felled sample trees 
 

Diameter class (cm) 5-10 10.1-20 20.1-30 30.1-40 40.1-50 > 50 

Number felled 3 10 8 4 2 3 

 

 
Table 2. Felled sample trees showing their DBH, height, basic density, volume, and biomass content 
 

Botanical Name 
Dbh 

(cm) 

Height 

(m) 

Stem (ρ) 

(gcm-3) 

Branch(ρ) 

(gcm-3) 

Volume 

(m3) 

Biomass 

(kg) 

Euclea natalensis A.DC. 5.0  6.2 0.614 0.583 0.0158 13.0283 
Turraea holstii Gürke 7.5  4.5 0.509 0.448 0.0055 11.2261 
Capparis tomentosa Lam. 10.0  4.6 0.735 0.733 0.0273 32.224 
Clausena anisata Willd. Hook. f. ex Benth 10.9  8.0 0.704 0.559 0.0383 30.9263 
Indigofera sp. 12.3  7.3 0.506 0.481 0.0527 37.7481 

Vangueria madagascariensis J.F.Gmel. 13.8  6.3 0.514 0.528 0.0541 39.5458 
Carissa edulis (Forssk.) Vahl  15.0  9.6 0.680 0.606 0.0927 130.867 
Elaeodendron buchananii (Loes.) Loes 16.1  5.0 0.624 0.603 0.0722 46.3013 
Hibiscus sp. 17.0  4.7 0.612 0.600 0.0793 94.080 
Ozoroa insignis Delile  18.5  8.4 0.510 0.426 0.1679 105.683 
Teclea simplicifolia (Engl.) I. Verd 19.0  7.7 0.749 0.685 0.1611 175.140 
Albizia schimperiana Oliv. 19.9 15.6 0.487 0.512 0.2699 156.608 
Vangueria madagascariensis J.F.Gmel. 20.0  3.8 0.521 0.508 0.0577 26.570 
Ozoroa insignis Delile subsp. latifolia 20.5 11.9 0.529 0.531 0.5090 246.516 

Calodendrum capense (L.f.) Thunb. 20.6 15.0 0.484 0.440 0.3553 196.553 
Acacia xanthophloea Hochst. Ex Benth. 21.0 11.7 0.740 0.671 0.2438 255.754 
Celtis africana Burm.f. 22.0 14.8 0.562 0.643 0.2824 206.441 
Olea sp. 24.0  9.5 0.707 0.703 0.2748 328.615 
Maytenus senegalensis (Lam.) Exell 26.0  6.5 0.685 0.640 0.2579 159.633 
Maytenus senegalensis (Lam.) Exell 27.4  7.8 0.673 0.608 0.2815 173.052 
Acacia nilotica (L.) Willd. ex Delile 28.4 11.2 0.797 0.735 0.4143 358.659 
Calodendrum capense (L.f.) Thunb. 30.1 10.0 0.583 0.480 0.4537 273.221 

Acacia xanthophloea Hochst. Ex Benth. 32.3 12.8 0.766 0.654 0.7446 514.147 
Acacia nilotica (L.) Willd. Ex Delile 33.1 11.3 0.746 0.708 0.6321 400.086 
Albizia schimperiana Oliv. 38.7 16.2 0.485 0.490 0.8717 497.065 
Celtis africana Burm.f. 41.0 18.8 0.667 0.662 1.1654 671.814 
Acacia gerradii Benth. 43.0 14.6 0.816 0.786 1.2700 770.793 
Diospyros abyssinica subsp. abyssinica 50.1 21.3 0.628 0.644 2.5103 1339.99 
Vangueria madagascariensis J.F.Gmel. 54.0 20.6 0.561 0.473 3.8998 1748.28 
Vangueria madagascariensis J.F.Gmel. 58.5 23.8 0.552 0.539 4.4837 2062.34 
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Table 3. Height model forms tested 
 

Model 

No. 
Height model form 

1 H = b0 + b1DBH  
2 H = 1.3 + b1DBH + b2DBH2 
3 

 
4 

 
Note: H=Tree height, bo,= Intercept of DBH, b1, and b2 are 
constant parameters while DBH is as defined previously 
 
 

Table 4. Volume and biomass model forms tested  
 

Model 

No. 
Model form 

1 Ln (Y) = a + b x Ln (DBH)+c x Ln (DBH2) + d x Ln 
(Ht) + e x Ln(Ht2) 

2 Ln (Y) = a + b x Ln (DBH2 x Ht) 
3 Ln (Y) = a + b x Ln (DBH) + c x Ln (Ht) 

4 Ln (Y) = a + b x Ln (DBH) 
5 Ln (Y) = a + b x Ln (WD x DBH2 x Ht) 

Note: Y=Volume (m3) or Biomass (kg); DBH (cm) and Ht=Tree 
height (m) and a, b, c, d, and e are constant parameters to be 
analyzed, Ln = natural logarithm, WD = Wood basic density 

 

 

The accuracy of the model was checked by percentage 

bias (PBIAS = ∑(Xobs-Xpre)/∑Xobs)x100, where; PBIAS = 

Percentage Bias, Xobs = Observed value derived from the 

equation, Xpre = Predicted value derived from the equation). 
According to Mandal et al. (2013), the Percentage Bias 

(PBIAS) was used to compare and evaluate the predicted 

and observed values for accuracy assessment. The lowest 

value of PBIAS indicated by a candidate model gives a 

better-fit result (Mandal et al. 2013). Regarding Osman et 

al. (2013), a graphical plot on residuals versus predicted 

values was important in visualizing the performance of 

prediction models. The best-selected models were then 

used to predict corresponding height, volume, and dry 

biomass quantities (Mugasha et al. 2013; Mwakalukwa et 

al. 2014; Asrat et al. 2020). All analyses were carried out in 
Microsoft Excel Spreadsheet, PAST, and Minitab 15 

software. 

RESULTS AND DISCUSSION 

Height models 

 Four model forms were formulated to predict height as 

a dependent variable, with diameter as the independent 

variable (Table 5). First, model 2 had the lowest R2 value 

but the highest values of RMSE and AIC. That indicates 

the poorest performance of all other models. Next, models 

1, 2, and 4 had similar RMSE values (1.79). Then Models 1 

and 4 had similar R2 values (0.77). Finally, Model 3 had 

the highest R2 and the lowest AIC value of all other 
models. The goodness of fit shown by model 3 implied that 

the model fitted the data well and was considered the best 

model for the height prediction for the unmeasured tree 

heights.  

When standardized residuals for model 3 were plotted 

against predicted values, it showed that most of the 

residuals were evenly distributed on both sides but were 

mostly closer to the horizontal line (zero), indicating the 

model fitted the data well (Figure 2). In addition, the model 

also had a very small bias of 0.23%, indicating a reduced 

error in the height prediction.  

Volume models 

Four models were parameterized for volume prediction. 

Table 6 shows that all four models had higher R2 values 

ranging from 0.91 to 0.97. Model 1 had higher R2 and AIC 
values than all other models except for parameter "a." All 

other parameters were insignificant at p < 0.05, indicating 

poor performance than other models. Like model 1, model 

2 had higher R2, but all other parameters were significant at 

p < 0.05, and their AIC value was much lower than model 

1, indicating it is a better model. Model 3 had a similar R2 

value as models 1 and 2 but was not comparable with 

model 4, which had the lowest R2 and highest RMSE and 

PBIAS indicating poor performance than all other models. 

Since model 3 had the lowest AIC and percentage bias, it 

was considered the best model for volume prediction.  
When standardized residuals of model 3 were plotted 

against predicted values (Figure 3), the scatter plot did not 

show any noticeable pattern. Most standardized residuals 

were distributed close but along the horizontal line (zero), 

implying that a model fitted well the data.  

Biomass models 

Five model forms were parameterized for biomass 

prediction (Table 7). Results showed high values of R2 with 

a range of 0.89 to 0.96. Since model 1 had the highest R2 

and smallest values of RMSE and AIC, it was expected to 

be the best model, but almost all its parameters were not 

significant at (p < 0.05). Apart from models 1 and 4, all 
other models had equal R2, but higher values of RMSE and 

AIC and all their parameters were significant at (p < 0.05). 

Among the significant models, that is, models 2 up to 5, it 

was observed that model 5 had the lowest RMSE and AIC 

values than the other three significant models indicating it 

to be the best model.  

When standardized residuals for model 5 were plotted 

against predicted values (Figure 4), the scatter plot did not 

show any noticeable pattern. Most of the standardized 

residuals were distributed along but close to the horizontal 

line (zero), indicating the attainment of homoscedasticity 
and the model fitted well the data.  
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Table 5. Height models showing parameter values and performance 
 

Model No. 
Parameter estimate and standard error Goodness of fit 

bo b1 b2 R2 RMSE AIC 

1 3.3266 
(0.3466) 

0.1306 
(693576.1) 

- 0.77 1.79 165.09 

2 1.3 
(0) 

0.3923 
(0.0241) 

-0.00171 
(0.00063) 

0.72 2.03 200.20 

3 2.3249 
(0.8977) 

6.6101 
(5.4716) 

0.2847 
(0.0241) 

0.78 1.79 164.37 

4 2.61e+08 
(0) 

1.0e+09 
(0) 

-3.3266 
(0) 

0.77 1.79 165.06 

Note: b0: constant; b1: intercept for independent variable DBH, and b2: constant parameters of models, and the numbers in blackest are 
their standard errors 

 

 

 
Predicted values 

 
Figure 2. Distribution of residuals from the horizontal line for 
height model 3 

 
Predicted values 

 
Figure 3. The distribution of residuals from line zero for the 
volume model 3 

 
 

Table 6. Volume models showing parameter values and performance 
 

Model 

No. 

Parameter estimates Goodness of fit Accuracy 

%BIAS a b c d e CF R2 RMSE AIC 

1 -10.02 0.77 0.2171 2.741 -0.402 1.043 0.97 0.292 61.2 0.81 

 
-1.28s 0.87s 0.158s 1.12s 0.26s 

     

 

0.000p 0.383p 0.179p 0.022p 0.14p 

     2 -9.86 0.995 
   

1.043 0.97 0.292 -111.18 -1.14 

 
0.30s 0.04s 

        
 

0.000p 0.000p 
        3 -9.845 1.915 1.089 

  
1.044 0.97 0.296 -144.18 -2.27 

 
0.30s 0.14s 0.16s 

       
 

0.000p 0.000p 0.000p 
       4 -9.583 2.635 

   
1.118 0.91 0.47 -138 2.6 

 

0.48s 0.15s 

        
 

0.000p 0.000p 
        Note: a is intercept, b, c, d, and e are constant parameters, and the superscript "s" and "p" are the standard error and probability of a 

parameter, respectively 

 

Discussion 

The height and diameter relationship found in this study 

was non-linear. Non-linear regression model 3 had a higher 

R2 than the other models tested. Marshall et al. (2012) 
argued that individual tree height is not simply correlated 

with diameter; instead, the ratio is related to species and the 

condition of the area. Differences in the structure 

"architecture" of the woody plants, especially shrubs, might 

have affected the performance of the height models tested.  

The developed volume and biomass models were 

important for assessing volume and carbon stock in LFR. 

However, the models tested performed differently. For both 

volume and biomass, model 3, which included height (Ht) 

in addition to (DBH) as independent variables, improved 

the fit more than when (DBH) alone (Model 4). Marshall et 

al. (2012) reported an overestimation of 55 t ha-1 or 31.5% 

biomass when height was excluded in the biomass 
prediction model. That is in agreement with other studies 

(Malimbwi et al. 1994; Chave et al. 2005, Marshall et al. 

2012; Mugasha et al. 2013; Mwakalukwa et al. 2014) that 

argued regression equations incorporating height are most 

likely to be accurate as they incorporate more information 

on the size of stems than those which utilized diameter 

alone. It was further shown that the inclusion of wood basic 

density in model 5 significantly improved the fit as 

supported by higher R2 and low RMSE.  
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Table 7. Biomass models showing parameter values and performance 

 

Model Parameter estimates Goodness of fit Accuracy 

No. a b c d e CF R2 RMSE AIC %BIAS 

1 -3.029  0.445  0.2217 3.384 -0.589 1.051 0.96 0.315 180.43 3.21 

 
1.37s  0.93s 0.16s  1.21s  0.28s 

     
 

0.037p  0.638p  0.201p  0.01p 0.056p 
     2 -2.074  0.853 

   

1.054 0.95 0.325 257.28 -3.36 

 
0.33s  0.039s 

        
 

0.000p  0.000p 
        3 -2.05  1.585 1.01 

  
1.054 0.95 0.326 236.81 -2.31 

 
0.33s  0.16s 0.18s 

       
 

0.000p  0.000p 0.000p 
       4 -1.807  2.251 

   
1.117 0.89 0.47 201.54 1.33 

 
0.48s  0.15s 

        
 

0.001p 0.000p 
        5 -1.666  0.853 

   

1.054 0.95 0.324 224.13 -1.93 

 
0.31s  0.04s 

        
 

0.000p 0.000p 
        Note: The superscript "s" and "p" are the standard error and probability of a parameter, respectively 

 
 

 

 
Predicted values 

 

Figure 4. The distribution of residuals about the horizontal line 
for biomass model 5 

 

 

The higher diversity and species composition 

experienced in the tropical forests, particularly the dry 

evergreen montane forest of LFR, support the argument for 
developing site-specific equations for mixed species 

(Djomo et al. 2016; Mokria et al. 2018; Asrat et al. 2020). 

Furthermore, Mwakalukwa et al. (2014) argued that due to 

the variation in species composition from site to site and 

the impact of site conditions on the shape of trees, the use 

of mixed-species regression models calibrated using data 

from sites with similar conditions and species composition 

is a logical choice. However, using biomass-generalized 

allometric equations available for tropical forests (Brown et 

al. 1989; Chave et al. 2005; Djomo et al. 2016) gave lower 

results and tended to give higher errors (Teshome et al. 

2022). For instance, Brown et al. (1989) biomass model 
gave an error of 5.5%, while that of Chave et al. (2005) had 

a much higher error of 15.1%, implying that site-specific 

mixed species biomass models developed in this study are 

more accurate by having a much lower error of 1.93% in 

the prediction. 

The differences in the estimates might also be attributed 

to differences in diameter size classes used to construct 

these generalized models. For instance, Brown et al. (1989) 

used a maximum of 40 cm. In contrast, this study 

developed the volume and biomass models with a 

maximum diameter of 58.5 cm. Moreover, locally abundant 

species are not represented in the databases used to develop 

the generalized models, thus failing to accurately predict 

the true biomass estimates in a particular forest (Mugasha 

et al. 2013; Mwakalukwa et al. 2014; Mugasha et al. 

2016a). Therefore, caution should be taken when using 

generalized models where local site-specific mixed-species 
models are unavailable (Djomo et al. 2016; Teshome et al. 

2022). The use of site-specific models is recommended to 

ensure that high precision in the quantification of woodland 

resources is achieved (Mwakalukwa et al. 2014; Njana 

2017; Mauya et al. 2019).  

In the allometric models selected for height prediction, 

the volume and biomass (carbon) quantification had high 

R2 and lower RMSE, AIC, and percentage bias than the 

existing generalized equations developed for vegetation in 

dry tropical forests. This study showed that height model 3, 

volume model 3, and biomass model 5 were the best-
predicting models in the study area. Despite DBH being the 

common predictor variable in most developed allometric 

models, the inclusion of height in the volume equation, and 

the use of wood density in biomass model 5 increased the 

goodness of fit (Henry et al. 2010; Mugasha et al. 2013; 

Mwakalukwa et al. 2014). The developed models provide 

important managerial tools that will assist managers, 

planners, and policymakers manage the LFR more 

sustainably, especially for future REDD+ project 

implementation phases in Tanzania. 

In conclusion, this study, for the first time, reports 
volume and biomass models for dry evergreen montane 

forests found in Tanzania. The reported site-specific 

models developed based on destructively sampled trees 

data from dry evergreen montane forests in Northern 

Tanzania yielded low bias, indicating an excellent fit. 

These models may also be considered for application in 

other dry evergreen montane forests lacking site-specific 

models after carefully evaluating the required conditions 

(i.e., tree-size distribution, species composition, and site 
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characters). These developed models add to the knowledge 

about volume and biomass models developed from various 

vegetation types found in Tanzania. 
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