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Abstract. Tirsyayu T, Soma AS, Paembonan SA. 2025. Land use direction based on landslide susceptibility levels in the Rongkong 
Watershed, South Sulawesi, Indonesia. Asian J For 9: 53-66. Landslides, a common natural disaster in Indonesia, cause significant 
material and non-material losses. Mitigation efforts, including the provision of accurate information about landslide-prone areas and 

appropriate land-use recommendations, are crucial for minimizing their impact. This study, which analyzed landslide susceptibility 
using the frequency ratio method integrated with GIS technology, provides confidence in its methodology. The research, which began 
with data collection on landslide occurrences through imagery, identified 388 landslide points. These data were divided into two groups: 
validation data (20%) and training data (80%). The validation process, using the ROC curve, yielded an AUC value of 0.81, indicating 
the effectiveness of the frequency ratio method in predicting landslide occurrences in the Rongkong Watershed, South Sulawesi, 
Indonesia. The study revealed that parameters such as rainfall, slope gradient, land cover, elevation, lithology, curvature, and slope aspect 
significantly influence landslides in the Rongkong Watershed. In contrast, parameters such as distance from rivers, distance from roads, and 
NDVI had less influence. The study's findings, which classified landslide susceptibility levels as very high (1.32%), high (29.05%), and 

moderate (25.70%) based on the total area of the Rongkong Watershed, are of significant importance. They suggest that land use in 
areas with very high and high susceptibility should be designated for conservation or protected zones. In comparison, areas with 
moderate susceptibility can be utilized for limited and controlled cultivation, such as implementing agroforestry systems. 

Keywords: Frequency ratio, landslide susceptibility, land use guidance, Rongkong Watershed 

Abbreviations: AUC: Area Under the Curve, DEM: Digital Elevation Model, FR: Frequency Ratio, GIS: Geographic Information 
System, LSI: Landslide Susceptibility Index, NDVI: Normalized Difference Vegetation Index, ROC: Receiver Operating 
Characteristics, SPSS: Statistical Product and Service Solutions 

INTRODUCTION 

The incidence of landslides in Indonesia has shown a 

worrying increase due to climate change, urbanization, and 

environmental degradation. According to the National 

Disaster Management Agency (BNPB 2022), there were 

17,296 natural disasters in Indonesia over the last five years 
(2017-2021), with landslides ranking as the third most 

frequent disaster, totaling 3,811 cases. The highest number 

of landslide incidents occurred in 2020, with 1,152 cases 

resulting in 128 fatalities and causing other significant 

damages. Proactive mitigation efforts are crucial to reduce 

these impacts. Providing information about landslide-prone 

areas is one of the strategies to minimize landslide 

consequences. Landslide susceptibility levels can be 

calculated using the Frequency Ratio (FR) method 

(Cantarino et al. 2023; He et al. 2023; Khan et al. 2024), 

which evaluates the relationship between landslide-causing 
factors and landslide occurrences. The larger the ratio, the 

stronger the relationship between the landslide events and 

contributing factors (Soma and Kubota 2017). The factors 

analyzed using the frequency ratio method depend on the 

availability of field data, such as slope gradient, slope 

aspect, elevation, curvature, lithology, land cover, distance 

from rivers, distance from roads, rainfall intensity, and 

vegetation density. 

The Rongkong Watershed, spanning approximately 

107.10 km in length and covering an area of 172,878.68 

hectares, is one of the regions frequently experiencing 

landslides. According to Al-Ghifary et al. (2016), the 

Rongkong Watershed is categorized as highly critical and 

prone to landslides due to its mountainous topography and 

high rainfall. Their study employed a scoring method 

focusing on the upstream area of the watershed. Kurniawan 

(2019) suggested increasing accuracy and adding 

parameters to improve landslide susceptibility assessments. 
Research by Gholami et al. (2019) found that the FR 

method has higher predictive accuracy than other methods. 

This method is also widely used for landslide susceptibility 

mapping (Jaafari et al. 2014; Meten et al. 2015; Efiong et 

al. 2021; KC et al. 2022; Keshri et al. 2023) and can be 

easily integrated with GIS technology. Geographic 

Information System is a computer-based system used to 

process spatial data or data that has geographic references. 

This technology is widely used in spatial analysis because 

it improves time efficiency and accuracy. Therefore, the 

application of the FR method is crucial to reducing 
researcher subjectivity, improving accuracy, incorporating 

additional parameters, and covering broader areas. This 

approach aims to assess entire watershed ecosystems, 

supporting safe and sustainable management while 

mitigating disaster risks exacerbated by increasing rainfall 
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intensity due to climate change. Furthermore, using 

watersheds as the unit of analysis, the causal relationships 

between upstream and downstream impacts can be clearly 

demonstrated (Narendra et al. 2021).  

In addition to providing information on landslide-prone 

areas, offering proper land-use guidance is also an important 

effort to reduce the risk of landslide disasters. According to 

Arjomandi et al. (2021), one of the main contributors to 

environmental degradation is improper land-use allocation. 

Comprehensive watershed management within a unified 
ecosystem is essential for maintaining ecological balance, 

controlling floods and erosion, ensuring water quality, and 

supporting the sustainability of natural resources. A key 

approach to sustainable watershed management and 

development is the proper allocation of land use within the 

watershed. Land-use planning guidelines serve as a 

framework or policy designed to regulate and optimize land 

utilization in a given area to align with its function, 

capacity, and environmental conditions. In the context of 

disaster vulnerability, such as landslides, land-use planning 

plays a crucial role in minimizing risks by identifying safe 
areas for development and areas that should be preserved 

or left in their natural state. Improper land use, such as 

construction on steep slopes or deforestation, can 

significantly increase the risk of landslides and other 

natural disasters. Therefore, by incorporating landslide 

susceptibility into land-use planning, a balance can be 

achieved between development needs, environmental 

protection, and disaster risk reduction. 

MATERIALS AND METHODS 

Study area 

This research was conducted from March to August 
2024 in the Rongkong Watershed (2° 21' 35"-2° 56' 15" S  

and 119° 51' 45"-120° 23' 15" E), which encompasses the 

regions of North Luwu and Luwu Districts in South 

Sulawesi Province, Indonesia. Data processing was carried 

out at the Watershed Management Laboratory, Faculty of 

Forestry, Hasanuddin University, Makassar, Indonesia 

(Figure 1). 

Procedures 

Tools and materials 

The tools used include a laptop equipped with ArcGIS 

10.8 and SPSS (Statistical Product and Service Solutions) 
applications, writing instruments, a camera, and a 

smartphone with mapping applications (SW Maps and 

Avenza Maps). The materials used include the Rongkong 

Watershed boundary map, administrative maps of Luwu 

and North Luwu Districts, Google Earth Pro imagery for 

landslide inventory from 2013-2023, Sentinel-2 imagery, 

the 2023 National DEM, rainfall data from 2013-2023, and 

the geological map of South Sulawesi. 

Landslide Inventory 

The landslide data for the Rongkong Watershed was 

obtained through the interpretation of Google Earth Pro 
imagery from 2013 to 2023. A total of 388 landslide points 

were identified, and a ground check was conducted to 

ensure the accuracy of the interpretation at several 

landslide points using a non-probability sampling 

technique. This technique does not provide equal 

opportunities for all population members to be selected. 

The type of sampling used was purposive sampling, where 

samples are chosen based on specific criteria such as 

accessibility to the location. This technique is among the 

most commonly used sampling methods (Palinkas et al. 

2015). A total of 30 landslide points and 15 non-landslide 
points were used as research samples. The results of the 

ground check are shown in Figure 2. 
 

 

 

 
 
Figure 1. Map of the research area in the Rongkong Watershed, South Sulawesi Province, Indonesia 
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Figure 2. Landslides in the Rongkong Watershed. A. Interpretation results from Google Earth Pro; B-E. Ground check results 
 
 

The validation of landslide occurrence data using the 

confusion matrix method and accuracy testing with overall 

accuracy showed that 91.11% of the data is accurate and 

acceptable, as it exceeds the 85% threshold set by Lillesand 
and Kiefer (2015). Landslide occurrence data were 

assigned a value of 1, and non-landslide data were assigned 

a value of 0, then converted into raster data with a pixel 

size of 10 × 10 m. The total number of landslide pixels is 

24,712 out of the total area of the Rongkong Watershed, 

which contains 17,287,886 pixels. This data was divided 

into two parts: 20% (4,943 pixels) for validation and 80% 

(19,769 pixels) for training. 

Data on the factors contributing to landslides 

This study analyzes the factors contributing to 

landslides, including rainfall, slope gradient, land cover, 
elevation, lithology, distance from rivers and roads, surface 

curvature, slope aspect, and vegetation density. Rainfall 

data from 2013 to 2023 was downloaded from NASA's 

website after identifying representative rainfall station 

points and stored in CSV format. The average annual 

rainfall was processed in ArcGIS using the Isohyet method 

and classified according to the Meteorology, Climatology, 

and Geophysics Agency (BMKG 2021) into four rainfall 

categories: low rainfall (0-1,500 mm), medium rainfall 

(1,500-3,000 mm), high rainfall (3,000-4,500 mm), and 

very high rainfall (>4,500 mm).  

Land cover data was generated through the 
interpretation of Sentinel-2A imagery. The interpretation 

was performed by analyzing patterns, tones, colors, and 

textures in the imagery and classifying them based on the 

2010 National Standardization Agency guidelines. Field 

observations were conducted by selecting sample locations 

using the purposive sampling method, ensuring 

accessibility of the locations. Data validation was carried 

out using the confusion matrix method, and accuracy 

testing with Overall Accuracy indicated a data accuracy of 

92.5%. There are 12 types of land cover in the Rongkong 

Watershed: shrubs, primary dryland forest, secondary 
dryland forest, secondary mangrove forest, grassland, 

plantations, settlements, dryland agriculture, mixed dryland 

agriculture and shrubs, rice fields, rivers, and fishponds. 

Elevation, slope gradient, distance from rivers, 

curvature, and slope aspect data were obtained from 

processing National DEM (Digital Elevation Model) data. 

Elevation data was classified based on the Minister of 

Public Works Regulation No. 20 of 2007 into the following 

classes: <500 meters above sea level (masl), 500-1,500 

masl, 1,500-2,500 masl, and >2,500 masl. Slope gradient 

data was classified according to the Perdirjen BPDASPS 
No. P.4/V-SET/2013: flat (<8%), gentle (8-15%), 

moderately steep (16-25%), steep (26-40%), and very steep 

(>40%). Distance from rivers was categorized into four 

classes: 0-100 m, 100-200 m, 200-300 m, and >300 m. 

Lithology data was derived from the geological map of 

South Sulawesi. Distance from roads was obtained by 

processing road data from the Geospatial Information 

Agency and classified into five classes: <500 m, 500-1,000 

m, 1,000-1,500 m, 1,500-2,000 m, and >2,000 m. 

Vegetation density was derived from Sentinel-2 

imagery and assessed using the Normalized Difference 

Vegetation Index (NDVI) with the following formula 
(Jacquemart and Tiampo 2021; Niraj et al. 2023): 

  

Where: NIR refers to the band with a near-infrared 

wavelength (band 8), while RED refers to the band with a 

red wavelength (band 4). NDVI values are classified into 

five categories: non-vegetated (-1 to 0.25), sparse 

A B 
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vegetation (0.25 to 0.35), moderately dense vegetation 

(0.35 to 0.45), dense vegetation (0.45 to 0.50), and very 

dense vegetation (0.50 to 1). NDVI values range from -1 to 

1 (Yengoh et al. 2015; Marsujitullah et al. 2023; Martinez 

and Labib 2023; Rashid et al. 2023). A value of -1 

indicates a non-vegetated classification, whereas a value of 

1 represents a very dense vegetation classification. 

Data limitations and bias control strategies 

The historical landslide event database is often 

incomplete or poorly documented, and there are data gaps 
in certain years, making it difficult to analyze trends 

consistently and comprehensively. This study introduces an 

innovative combined approach and integrates existing 

historical data with remote sensing data, such as satellite 

imagery and more recent field information, to address this 

limitation. This novel approach significantly improves the 

accuracy of the landslide susceptibility analysis, reflecting 

a more comprehensive condition. 

Landslide susceptibility level analysis 

The landslide susceptibility level is calculated based on 

the influence of rainfall, slope gradient, land cover, 
elevation, rock type/lithology, distance from rivers, 

distance from roads, surface curvature, slope aspect, and 

vegetation density on landslide occurrences, analyzed using 

the frequency ratio method with the following formula 

(Soma and Kubota 2017): 

  

Where: FR stands for Frequency Ratio; PxcL refers to 

the number of landslide pixels in class n of parameter m 

(nm); Pixel represents the number of pixels in class n of 

parameter m (nm); ∑PnxL is the total pixels of parameter 

m; and ∑Pnx is the total pixels of the area. The larger the 

ratio exceeds 1, the stronger the relationship between 

landslide occurrences and the causal factor. Conversely, if 
the ratio is less than 1, the relationship between landslide 

occurrences and that factor is weak (Pradhan and Lee 

2010). The Landslide Susceptibility Index (LSI) is created 

by mapping all factors into raster maps based on their FR 

values, which are then summed using the formula (Abbasa 

et al. 2024; Gulbet and Getahun 2024): 

LSI = ∑ FR  

Data validation 

Data validation is intended to evaluate a classification 

model. The validation process uses the ROC (Receiver 

Operating Characteristics) curve, calculated using SPSS 

software. The ROC curve displays the AUC (Area Under 

Curve) value. AUC evaluation results are classified 

according to Rasyid et al. (2016) as follows: fail (0.50-
0.60), poor (0.60-0.70), fair (0.70-0.80), good (0.80-0.90), 

and excellent (0.90-1.00). The data used include landslide 

events divided into two sets: 20% for assessing the model's 

predictive capability and 80% for evaluating the model's 

success. The validation results (Figure 3) show identical 

AUC values for both the model prediction rate (20%) and 

the model success rate (80%), at 0.806 or 0.81.  

According to Rasyid et al. (2016), an AUC value within 

the range of 0.80-0.90 indicates that a model performs well. 

In this case, the frequency ratio method is considered 

effective in predicting landslide occurrences in the 

Rongkong Watershed. 

RESULTS AND DISCUSSION 

Results of the frequency ratio analysis of landslide 

contributing factors in the Rongkong Watershed 

The factors causing landslides are extracted into 

landslide data points, and their ratio to landslide 

occurrences is calculated. The FR value indicates the extent 

of a factor's influence on landslide occurrences. An FR 

value of 1 represents the average FR value; if FR >1, it 

means the factor is correlated with landslide occurrences. 

Conversely, if FR <1, the factor has minimal influence. The 

higher the FR value, the greater its impact on landslide 
occurrences (Huang et al. 2021; Sahrane et al. 2023). The 

FR value for each factor can be found in Table 1. 
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Figure 3. The ROC curve. A. Model Prediction Rate (20%) and B. Model Success Rate (80%) 
Table 1. The FR values of the factors contributing to landslides in the Rongkong Watershed, South Sulawesi, Indonesia 

 

Parameter Class PxcL % PxcL PnXL % PnXL FR 

Rainfall (mm/year) 3,370.36 19,523 98.76 13,008,802 75.25 1.31 
3,389.49 85 0.43 610,461 3.53 0.12 
3,413.81 77 0.39 415,767 2.41 0.16 
3,433.59 0 0.00 2,617,272 15.14 0.00 
3,441.69 84 0.42 634,761 3.67 0.12 
Total 19,769 100 17,287,063 100 

 
Slope (%) 0-8 235 1.19 4,339,796 25.10 0.05 

8-15 347 1.76 933,749 5.40 0.32 
16-25 873 4.42 1,448,739 8.38 0.53 
26-40 4,395 22.23 4,556,209 26.36 0.84 
>40 13,919 70.41 6,008,570 34.76 2.03 
Total 19,769 100 17,287,063 100  

Land Cover Shrubland 2,853 14.43 230,694 1.33 10.81 
Primary Dryland Forest 1,671 8.45 814,697 4.71 1.79 
Secondary Dryland Forest 13,761 69.61 9,267,173 53.61 1.30 
Secondary Mangrove Forest 0 0.00 27,678 0.16 0.00 
Grassland 51 0.26 1,557 0.01 28.64 
Plantation 366 1.85 1,748,136 10.11 0.18 
Settlement 0 0.00 398,278 2.30 0.00 
Dryland Farming 5 0.03 1,615,109 9.34 0.00 
Dryland Farming Mixed with Shrubs 680 3.44 933,678 5.40 0.64 
Rice Field 261 1.32 1,478,531 8.55 0.15 
River 121 0.61 301,517 1.74 0.35 
Ponds 0 0.00 470,015 2.72 0.00 
Total 19,769 100 17,287,063 100  

Elevation 
(masl) 

<500 1,159 5.86 7,207,798 41.69 0.14 
500-1500 15,352 77.66 7,207,675 41.69 1.86 
1500-2500 3,252 16.45 2,852,047 16.50 1.00 
>2500 6 0.03 19,543 0.11 0.27 
Total 19,769 100 17,287,063 100  

Lithology Latimojong Formation 174 0.88 797,799 4.62 0.19 
Matano Formation 0 0.00 9,478 0.05 0.00 
Ultramafic Complex 0 0.00 128,385 0.74 0.00 
Alluvium 0 0.00 4,292,413 24.83 0.00 
Barufu Tufa 78 0.39 543,098 3.14 0.13 
Toraja Formation 214 1.08 512,469 2.96 0.37 
Intrusive Rocks 0 0.00 1,296 0.01 0.00 
Dondo Suit 16,834 85.15 7,626,040 44.11 1.93 
Lamasi Volcano Rocks 2,469 12.49 3,376,085 19.53 0.64 
Total 19,769 100 17,287,063 100  

Distance from the 
river (m) 

0-100  410 2.07 1,012,573 5.86 0.35 
100-200 628 3.18 928,857 5.37 0.59 
200-300 850 4.30 883,972 5.11 0.84 
>300 17,881 90.45 14,461,661 83.66 1.08 
Total 19,769 100 17,287,063 100  

Distance from the 
road (m) 

<500 1,443 7.30 4,525,896 26.18 0.28 
500-1000 885 4.48 2,029,977 11.74 0.38 
1000-1500 822 4.16 1,449,588 8.39 0.50 
1500-2000 57 0.29 1,402,114 8.11 0.04 
>2000 16,562 83.78 7,879,488 45.58 1.84 
Total 19,769 100 17,287,063 100  

Curvature Concave 1187 6.00 676,138 3.91 1.54 
Flat 10,361 52.41 8,251,754 47.73 1.10 
Convex 8221 41.59 8,359,171 48.36 0.86 
Total 19,769 100 17,287,063 100  

Slope aspect Flat 26 0.13 30,950 0.18 0.73 
 North 1,791 9.06 2,088,612 12.08 0.75 
 Northeast 2,746 13.89 2,135,194 12.35 1.12 
 East 3,224 16.31 2,396,859 13.87 1.18 
 Southeast 3,749 18.96 2,728,425 15.78 1.20 
 South 3,258 16.48 2,443,406 14.13 1.17 
 Southwest 2,306 11.66 1,998,299 11.56 1.01 
 West 1,272 6.43 1,724,967 9.98 0.64 
 Northwest 1,397 7.07 1,740,351 10.07 0.70 
 Total 19,769 100 17,287,063 100  
Vegetation density Non-Vegetated 744 3.76 701,002 4.06 0.93 
 Sparse Vegetation 450 2.28 313,993 1.82 1.25 
 Moderately Dense Vegetation 467 2.36 380,781 2.20 1.07 
 Dense Vegetation 294 1.49 188,867 1.09 1.36 
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 Very Dense Vegetation 17,814 90.11 15,702,420 90.83 0.99 
 Total 19,769 100 17,287,063 100  

Based on Table 1, it is evident that each factor has a 

different FR value, indicating that not all factors have the 

same level of correlation with landslide occurrences in the 

Rongkong watershed. The map of landslide-causing factors 

in the Rongkong Watershed can be seen in Figure 4. The 

FR value for each landslide-causing factor is presented in 
the graph below (Figure 5). 

According to Hontus (2016), rainfall is a natural factor 

that plays an important role in landslide events. Rainfall is 

the dominant factor controlling slope stability (Zhang et al. 

2019; Alsubal et al. 2019; Farooq and Akram 2021; 

Chellamuthu and Ganapathy 2024). High rainfall can 

increase the water pressure in the soil. Water that 

permeates the soil saturates it, reducing the soil's bearing 

capacity and increasing the risk of landslides (Gallage et al. 

2021; Poddar and Roy 2024). High rainfall can also expand 

the soil's porosity. Water that seeps into the soil fills the 

pores, weakening the soil structure and making it more 
susceptible to mass movement. An increase in precipitation 

in a region will lead to more frequent landslide 

occurrences. 

Based on the rainfall data processing from the last 10 

years (2013-2022), the rainfall data for the Rongkong  

Watershed ranges between 3,370.36 and 3,441.69 

mm/year, which falls into the high rainfall category (3,000-

4,500 mm/year). The corresponding FR value, which 

indicates the potential for landslide events, is shown in 

Figure 5.A. Figure 5.A also presents a surprising finding: 

while still categorized as high, a rainfall of 3,370.36 

mm/year has an FR value of 1.31, the highest in the lowest 

class. This unexpected result underscores the strong 

relationship between landslide occurrences and rainfall. It 

suggests the influence of other factors, such as the 

predominantly very steep slope steepness and the land 

cover, including grasslands and shrubs. 

Slope steepness has a significant influence on the 

potential for landslides (Guo et al. 2021; Tesfa and 

Woldearegay 2021). Steeper slopes exert greater pressure 
on the soil material, increasing the likelihood of mass 

movement downwards. According to the study by Roback 

et al. (2018), the highest landslides occur at the junction of 

steep slopes. The steeper the slope, the more likely a 

landslide will occur (Diara et al. 2022; Ma et al. 2022; 

Arumugam et al. 2023; Xie et al. 2023). The FR value of 

slope steepness in the Rongkong Watershed can be seen in 

Figure 5.B. 
 
 
 

 
 
Figure 4. Map of landslide triggering factors in the Rongkong Watershed, South Sulawesi, Indonesia 



TIRSYAYU et al. – Land use and landslide susceptibility levels 

 

59 

 
 
Figure 5. Graph of FR values for landslide-causing factors 
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At slopes >40% (very steep), the FR value is >1, 

specifically 2.03, indicating a strong relationship with 

landslide occurrences. Meanwhile, the slope classes of 

steep, moderately steep, gentle, and flat have FR values <1, 

indicating a low correlation. This aligns with the study by 

Tang et al. (2015), which found that landslide 

concentration increases with steeper slope angles. Slopes 

steeper than 20° are highly prone to landslides (Acosta-

Quesada and Quesada-Román 2024). Additionally, other 

factors, such as high rainfall and land cover (grasslands and 
shrubs), have a significant impact on landslide occurrences 

on very steep slopes. 
Land covered with dense vegetation and strong roots 

tends to have a lower risk of landslides because it can 

absorb rainwater and prevent material saturation on slopes, 

especially on steep slopes (Jeong et al. 2017). Forests with 

strong root systems can stabilize the soil and help maintain 

slope stability (Soma and Kubota 2017; Sujatha et al. 

2023). The roots of vegetation can help maintain soil 

stability by reinforcing the soil structure and preventing 

erosion (Dorairaj and Osman 2021; Jafari et al. 2022; Gong 
et al. 2024; Lann et al. 2024). 

Based on Figure 5.C, land cover types with an FR value 

>1 include grasslands, shrubs, primary dryland forests, and 

secondary dryland forests. Grasslands, covering an area of 

15.57 ha, have an FR value of 28.64; shrubs, with an area 

of 2,306.94 ha, have an FR value of 10.81; followed by 

primary dryland forests, covering 814,697 ha with an FR 

value of 1.79, and secondary dryland forests, covering 

9,267,173 ha, with an FR value of 1.30. 

Landslides can occur in areas with land cover types 

such as bare land, fields, shrubs, and grasslands. According 
to Hurlimann et al. (2022), root strength is higher in forests 

than in grasslands and shrubs. In a previous study by 

Abedin (2020), most landslide events occurred in areas 

with shrub and grassland cover. Shrubs and grasslands 

have a less robust root system to anchor the soil, resulting 

in lower soil stability and making landslides more likely. 

Although secondary dryland forests are often covered by 

tree vegetation, landslides can still occur due to 

disturbances or changes from their original condition 

caused by human activities. Unlike primary dryland forests, 

landslides can still happen in these areas, even without 

human activities, due to other factors influencing soil 
stability. It's crucial to understand that steep slopes and 

heavy rainfall are critical factors that can trigger landslides, 

underscoring the urgency of studying these elements. Most 

of the primary dryland forests in the Rongkong Watershed 

are located on very steep slopes with high rainfall. 

The higher the elevation of an area, the greater the 

potential gravitational energy, which makes soil and rocks 

more active (Wu et al. 2023). In higher areas, groundwater 

pressure is higher due to more rainfall infiltrating the soil. 

High groundwater pressure can cause the soil to become 

more saturated and soft, which increases the likelihood of 
landslides. High elevations, especially on steep slopes, tend 

to support the occurrence of landslides (Li et al. 2021; 

Dunham et al. 2022). 

Figure 5.D presents a graph of the FR values for the 

elevation of the Rongkong Watershed. The elevation class 

with an FR value greater than 1 is between 500 and 1,500 

meters above sea level (1.86). Meanwhile, the elevation 

from 1,500 to 2,500 masl shows a value of 1, which 

represents the average FR value; unlike the landslide study 

by Li et al. (2021), landslide occurrences in the Rongkong 

Watershed decrease at elevations of 1500 meters and 

above, marked by a decline in the FR value. A similar 

finding was reported in the study by Zhou et al. (2016), 

which stated that landslides are more frequent at mid-

elevations, specifically between 900-1,300 masl and 1,200-
2,000 masl. Landslides at these mid-elevations occur due to 

human activities, such as deforestation, which reduces or 

even eliminates vegetation that helps maintain slope 

stability. This is further exacerbated by the high rainfall 

and steep slopes in the Rongkong Watershed, which 

facilitate the occurrence of landslides. 

According to the Ministry of Public Works Regulation 

Number 22/PRT/M/2007, one of the factors that contribute 

to landslides is the type of rock/lithology. Lithology is an 

important controlling factor (Bahrami et al. 2019; 

Pourghasemi et al. 2020; Wu et al. 2020; Conforti and Ietto 
2021; Yu et al. 2021; Rahaman et al. 2024). The strength of 

the rock can determine how easily or how difficult it is for 

the rock to break or shift. Rocks with fragile or fragmented 

structures are more prone to landslides because they are 

more easily affected by pressure and ground movement. On 

steeper slopes, more material is crushed for certain types of 

material, leading to larger landslides (Katz et al. 2014). In 

the Rongkong Watershed, there are nine types of rock 

formations: Latimojong Formation, Matano Formation, 

Ultramafic Complex, Alluvium, Tufa Barufu, Toraja 

Formation, Intrusive Rocks, Suit Dondo, and Lamasi 
Volcano Rocks. The FR values for each lithology class are 

shown in Figure 5.E. 

Based on Figure 5.E, the Suit Dondo rock type has an 

FR value greater than 1, specifically 1.93, indicating a 

strong correlation with landslide occurrences in the 

Rongkong Watershed. Suit Dondo rocks generally have a 

coarse to medium texture and high hardness. Landslides 

can occur when hard rocks undergo weathering (Saputra 

and Heriyadi 2019; Silwal et al. 2024). According to 

Komadja et al. (2020), weathering of rocks causes slope 

instability, which triggers landslides. Especially on very 

steep slopes and with high rainfall, these rocks may 
fracture and lead to landslides. 

Based on Figure 5.F, it can be seen that the distance 

from the river with an FR value greater than 1 is greater 

than 300 meters (1.08). According to Cheng et al. (2021), 

the distance from the river is one of the factors that 

significantly influences landslides. Slopes near rivers are 

more prone to landslides (Hidayah et al. 2017; Hua et al. 

2020; Ali et al. 2021; Mahalingam and Kim 2021; Naik 

and Palakuzhiyil 2024). softening the soil, which weakens 

slope stability. A different finding was observed in the 

Rongkong Watershed, where landslides were more 
frequent at distances greater than 300 meters. Similarly, in 

the study by Abedin (2020), the distance from the river had 

little influence on landslide occurrences. Although the 

distance from the river is far, landslides in the Rongkong 

Watershed can still occur due to other factors, such as very 
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steep slopes, high rainfall, and land cover in the form of 

shrubs and grasslands. 

The distance from roads within the Rongkong 

Watershed is shown in Figure 5.G, the road >2,000 meters 

(1.84). This value indicates a high correlation between 

landslide occurrences and the distance from the road in the 

>2000 m class. According to Hidayah et al. (2017), the 

distance between the road and the slope can trigger 

landslides due to vehicle traffic around the slope. The 

closer the slope is to the road, the greater the likelihood of 
a landslide (Teimouri and Nalivan 2020; Ye et al. 2022). In 

contrast to the Rongkong Watershed, landslides in this area 

are more frequent in that the distance from the road did not 

significantly affect landslide occurrences, as indicated by 

the lowest weight value among all the factors. This is also 

consistent with the research of Abedin (2020), which found 

that most landslides occur within 2000 meters of the road. 

This is likely due to other factors influencing landslide 

occurrences in the area, such as high rainfall and slope 

steepness, which is dominated by moderate to very steep 

gradients. 
There are three forms of the Earth's surface: convex, 

indicated by positive values; concave, indicated by 

negative values; and flat, indicated by zero values. Concave 

areas of the Earth's surface tend to have a higher risk of 

landslides compared to convex areas. This is because 

concave slopes can retain more water after heavy rainfall 

and hold it for longer periods, causing the soil to reach 

saturation and lose strength, making it more prone to 

landslides. Zhuang et al. (2018) stated that landslides are 

more common on concave slopes. In Figure 5.H, curvature 

(concave) classes with an FR value greater than 1 are the 
concave and flat classes. The concave class has an FR 

value of 1.54, while the flat class has an FR value of 1.10, 

indicating a strong correlation with landslide occurrences 

in the Rongkong Watershed. This is due to the possibility 

of flat areas forming in highlands as a result of geological 

processes such as sedimentation or erosion. Flat areas on 

steep slopes, such as terraces, tend to collect rainwater, 

causing the soil to become saturated and triggering 

landslides, especially during periods of high rainfall. 
One significant factor affecting landslide occurrences is 

the slope aspect (Gorokhovich and Vustianiuk 2021; Qi et 

al. 2021); varying levels of rainfall, sunlight, and wind 
influence slopes facing different directions. Slopes that 

receive more rainfall tend to be more vulnerable to 

landslides compared to those facing other directions 

(Cellek 2021). Additionally, wind direction can also affect 

landslides. Indirectly, strong winds can exert pressure on 

slopes from a specific direction, increasing the stress on the 

soil or rock material on that slope, thereby disrupting slope 

stability and increasing the risk of landslides, especially if 

the slope is already unstable. 

Figure 5.I is a graph showing the FR values for slope 

aspect. The FR value greater than 1 is found in the 
southeast slope direction (1.20), followed by the east 

direction (1.18), south direction (1.17), northeast direction 

(1.12), and southwest direction (1.01). It can be observed 

that the FR value increases from the north to the southeast 

and then decreases again toward the northwest direction. 

This is consistent with the study by Naseer et al. (2021), 

which found that slopes facing the sun are generally more 

exposed to direct sunlight, accelerating weathering 

processes and increasing the risk of landslides. South-

facing slopes are also the most susceptible to landslides 

(Bahadur et al. 2020; Li et al. 2021). When the sun is in the 

south, rainfall tends to be higher due to the large amount of 

evaporation from the Indian Ocean. Zhuang et al. (2018) 

also found that landslides were more dominant on slopes 
facing southeast. Wu et al. (2020) added that east-facing 

slopes are more prone to landslides. 

Vegetation can help maintain slope stability by 

preventing erosion and soil movement. The denser the 

vegetation, the stronger the soil is bound by plant roots, 

thereby reducing the likelihood of landslides. The FR value 

of vegetation density is presented in Figure 5.J. 

According to the study by Deng et al. (2022), most 

landslides occur on slopes with sparse vegetation and are 

less frequent in areas with high vegetation density. High 

vegetation cover plays a crucial role in reducing landslide 
risk because it helps support slope stability and aids in 

landslide mitigation. Gholami et al. (2019) also stated that 

vegetation density significantly influences landslide 

occurrence, with landslide frequency decreasing as 

vegetation density increases. However, this study found 

that the highest FR values were actually in areas with dense 

vegetation, with a value of 1.36, followed by areas with 

sparse vegetation (1.25) and moderately dense vegetation 

(1.07). This is certainly influenced by other factors at the 

study site, such as steep slopes, which dominate the area 

with a very steep gradient covering 60,089.67 hectares, and 
high rainfall. It's important to note that the vegetation 

density index or NDVI, while useful in providing 

information about the presence or density of vegetation, 

cannot provide information about the quality of the 

vegetation, particularly the species diversity in the study 

area, which could help prevent landslides. This highlights 

the need for further research and development in this area. 

Discussion 

Landslide susceptibility in the Rongkong Watershed 

The landslide susceptibility map of the Rongkong 

Watershed (Figure 6) was created based on the LSI values, 

which represent the levels of very low, low, moderate, 
high, and very high landslide susceptibility (Chen et al. 

2014).  Figure 7 shows the percentage of landslide 

susceptibility in the Rongkong Watershed. It is calculated 

by dividing the area of the susceptibility class by the total 

area of the Rongkong watershed, multiplied by 100. 

The very low susceptibility class covers an area of 

46,588.50 ha (26.95%) and includes 79 villages. The 

largest area of low susceptibility is in Lawewe Village 

(Baebunta Selatan District), with 2,824.812 ha, followed by 

Wara Village (Malangke Barat District), with 2,687.800 ha, 

and Lembang-lembang Village (Baebunta Selatan District) 
with 2,266.173 ha. Dryland agriculture, rice fields, and 

settlements dominate this class. 
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Figure 6. Landslide susceptibility map of the Rongkong Watershed, South Sulawesi, Indonesia 
 
 
 

 
 
Figure 7. Landslides susceptibility level percentage in Rongkong 
Watershed, South Sulawesi, Indonesia 
 
 
 

The low susceptibility class covers an area of 29,339.90 

ha (16.97%) and includes 75 villages. The village with the 

largest area of low susceptibility is Malimbu Village 

(Sabbang District) at 2,983.20 ha, followed by Pombakka 

Village (Malangke Barat District) at 2,247.23 ha, and 

Tandung Village (Sabbang District) at 2,061.51 ha. 

Secondary dryland forest cover, plantations, and mixed 

dryland agriculture and shrubland dominate this class.  

The moderate susceptibility level covers an area of 

44,436.06 ha (25.70%) and includes 28 villages. The 

village with the highest moderate landslide susceptibility is 
Tandung Village (Sabbang District) at 7,425.09 ha, 

followed by Malimbu Village (Sabbang District) at 

3,416.22 ha and Siteba Village (Walenrang Utara District) 

at 3,363.79 ha. This class is dominated by secondary 

dryland forest cover, mixed dryland agriculture and 

shrubland, and primary dryland forest. 

The high susceptibility class covers an area of 

50,226.70 ha (29.05%) and includes 23 villages. Maipi 

Village (Masamba District) ranks first for the highest area 

of high landslide susceptibility, measuring 9,278.84 ha, 

followed by Kanandede Village (Limbong District) at 

7,975.83 ha and Baebunta Village (Baebunta District) at 

6,519.30 ha. This class is also dominated by secondary 

dryland forest cover, primary dryland forest, and mixed 

dryland agriculture and shrubland. 

The very high susceptibility class encompasses an area 
of 2,287.52 ha (1.32%) and includes 15 villages. The 

village with the largest area is Maipi Village (Masamba 

District) at 587.48 ha, followed by Pongko Village 

(Walenrang Utara District) at 322.48 ha, and Tandung 

Village (Sabbang District) at 286.84 ha. This class is 

dominated by shrubland cover, secondary dryland forest, 

and grassland. Although the very high susceptibility class 

represents only 1.34% of the total area of the Rongkong 

Watershed, the area of 2,287.52 ha is not insignificant. 

Furthermore, the high susceptibility class has the largest 

area, reaching 29.05%, and the moderate susceptibility 
class covers 25.70%. Therefore, it is essential to remain 

vigilant regarding the potential for landslides to occur. 

Land use direction for the Rongkong Watershed 

Land use is one of the factors that influences 

environmental conditions. Improper land use can have 

detrimental effects on the environment, including increased 

erosion, heightened surface runoff, and an elevated risk of 

landslides and flooding. Determining land use directions 

based on landslide susceptibility levels is a crucial step in 

spatial planning and disaster risk management. According 
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to Eker and Aydin (2016), a risk-based approach is 

essential in land use planning to minimize the impacts of 

landslides. Furthermore, Lillesand and Kiefer (2015) stated 

that disaster risk management is a key component of 

sustainable development strategies aimed at reducing losses 

and supporting community resilience. Landslide 

susceptibility maps can be utilized as a supportive tool in 

decision-making to implement better land use planning 

(Roccati et al. 2021). 

The direction of land use is based on the results of the 
analysis of landslide susceptibility levels in the Rongkong 

Watershed. It takes into account the types of land use in 

areas categorized by their susceptibility to landslides. Land 

use that does not conform to spatial planning guidelines in 

landslide-prone areas will be directed to prevent landslide 

risks. Based on the levels of landslide susceptibility in the 

Rongkong Watershed, land use directions are provided in 

accordance with spatial planning guidelines outlined in 

Ministerial Regulation No. 22/PRT/M/2007. In areas with 

very high and high landslide susceptibility, there are 

settlements, rice fields, grasslands, plantations, and 
shrublands. These areas are designated as protected areas 

or conservation zones. Agricultural activities and the 

development of residential centers, along with supporting 

facilities for social and economic activities, should be 

avoided, except for facilities that directly improve 

environmental quality, such as drainage systems and other 

environmental infrastructure networks. 

In areas with moderate landslide susceptibility 

containing rice fields, settlements, plantations, shrublands, 

and grasslands, land use is directed to function as limited 

controlled cultivation areas, such as the implementation of 
agroforestry systems. Activities related to the components 

of spatial structure should adhere to the environmental 

carrying capacity and comply with the provisions set forth 

in Government Regulation No. 27 of 1999 concerning 

Environmental Impact Assessment. 

In areas with low and very low landslide susceptibility, 

land can be utilized for residential activities, mining, 

production forests, urban forests, plantations, agriculture, 

fisheries, livestock, tourism, or other activities while still 

adhering to Government Regulation No. 27 of 1999 

concerning Environmental Impact Assessment. In the 

Rongkong Watershed, land use in areas with low and very 
low susceptibility levels is already in accordance with 

regulations. 

The findings regarding the landslide susceptibility level 

provide important information to the local community 

about potential risks in their area, particularly for the 

communities in Maipi, Kanandede, and Baebunta Villages, 

which are identified as areas with very high landslide risk. 

With a better understanding, the community can become 

more alert and prepared for potential disasters, such as 

avoiding certain activities in high-risk areas. Additionally, 

by providing accurate and applicable information to the 
local community, this research helps them make wiser, 

sustainability-oriented decisions, thereby minimizing the 

negative impacts of future landslides. The suggested land 

use guidance is crucial for minimizing natural disaster 

risks, improving land productivity, and supporting the 

community's well-being. With the implementation of the 

recommended strategies, land management can be 

conducted more effectively and efficiently, providing long-

term benefits in terms of economy, environment, and 

society and offering hope for a safer future. 

However, socio-economic challenges may arise in 

implementing these recommendations. Most of the people 

in landslide-prone areas depend on land use for agriculture, 

livestock, or settlement. Relocation or land-use changes 

could lead to the risk of losing livelihoods and increase 
economic burdens. Additionally, limited access to 

resources, such as funding for implementing mitigation 

practices or supporting technologies, could present 

significant barriers. Therefore, an approach involving the 

local community, such as providing economic incentives, 

ongoing education, and government support, is essential to 

overcoming these challenges and ensuring the successful 

implementation of the recommendations. 

In conclusion, land use directions are established to 

control landslides, with areas of very high and high 

susceptibility directed to become protected or conservation 
areas. In contrast, areas with moderate susceptibility are 

designated for limited cultivation with strict controls, such 

as the implementation of agroforestry systems. The results 

of this study can serve as a primary basis in spatial 

planning, particularly in identifying and designating 

protected or conservation areas in regions with very high 

and high landslide susceptibility. Local governments need 

to strengthen regulations and supervision of development 

in these areas to minimize disaster risks. Additionally, this 

study emphasizes the importance of synergistic 

collaboration between the government, non-governmental 
organizations, academia, and local communities in 

designing and implementing comprehensive risk mitigation 

strategies. This approach ensures that the research findings 

are not merely academic documents but are translated into 

policies and concrete actions that effectively reduce 

disaster impacts. 

ACKNOWLEDGEMENTS 

We would like to express our gratitude to all parties 

who have contributed to this research. We wish to extend 

our thanks to the Faculty of Forestry at Hasanuddin 

University, Indonesia for providing the necessary facilities 

and resources. We are grateful to our colleagues and 
friends for their moral support and constructive criticism.  

REFERENCES 

Abbasa H, Khana AA, Hussaina D, Khanb G, Hassan SN, Kulsooma I, 

Bazai SU. 2024. Landslide inventory and landslide susceptibility 

mapping for China Pakistan Economic Corridor (CPEC)'s main route 

(Karakorum Highway). J Appl Emerg Sci 11 (1): 18-30. DOI: 

10.36785/jaes.111461. 

Abedin J, Rabby YW, Hasanx I, Akter H. 2020. An investigation of the 

characteristics, causes, and consequences of 13 June, 2017, landslides 

in Rangamati District Bangladesh. Geoenviron Dis 7: 23. DOI: 

10.1186/s40677-020-00161-z. 

https://doi.org/10.1186/s40677-020-00161-z


ASIAN JOURNAL OF FORESTRY  9 (1): 53-66, June 2025 

 

64 

Acosta-Quesada M, Quesada-Román A. 2024. Landslides and flood 

hazard mapping using geomorphological methods in Santa Ana, 

Costa Rica. Intl J Dis Risk Reduct 113: 104882. DOI: 

10.1016/j.ijdrr.2024.104882. 

Al-Ghifary A, Malamassam D, Bachtiar B. 2016. Pemetaan tingkat 

kerawanan longsor di Sub DAS Rongkong Hulu, DAS Rongkong, 

Kabupaten Luwu Utara. [Skripsi]. Hasanuddin University, Makassar. 

[Indonesian] 

Ali M, Chu HJ, Chen YC, Ullah S. 2021. Machine learning in earthquake- 

and typhoon-triggered landslide susceptibility mapping and critical 

factor identification. Environ Earth Sci 80: 233. DOI: 

10.1007/s12665-021-09510-z. 

Alsubal S, Sapari NB, Harahap ISH, Al-Bared MA. 2019. A review on 

mechanism of rainwater in triggering landslide. IOP Conf Ser: Mat 

Sci Eng 513 (1): 012009. DOI: 10.1088/1757-899X/513/1/012009. 

Arumugam T, Kinattinkara S, Velusamy S, Shanmugamoorthy M, 

Murugan S. 2023. GIS based landslide susceptibility mapping and 

assessment using weighted overlay method in Wayanad: A part of 

Western Ghats, Kerala. Urban Clim 49: 101508. DOI: 

10.1016/j.uclim.2023.101508. 

Arjomandi A, Mortazavi SA, Khalilian S, Garizi AZ. 2021. Optimal land-

use allocation using MCDM and SWAT for the Hablehroud 

Watershed, Iran. Land Use Policy 100: 104930. DOI: 

10.1016/j.landusepol.2020.104930. 

Bahadur PB, Rai P, Katel P, Khadka A. 2020. Landslide Hazard Mapping 

in Panchase Mountain of Central Nepal. Environ Nat Resour 18 (4): 

387-399. DOI: 10.32526/ennrj.18.4.2020.37. 

Bahrami S, Rahimzadeh B, Khaleghi S. 2019. Analyzing the effects of 

tectonic and lithology on the occurrence of landslide along Zagros 

ophiolitic suture: a case study of Sarv-Abad, Kurdistan, Iran. Bull 

Eng Geol Environ 79: 1619-1637. DOI: 10.1007/s10064-019-01639-

3. 

BMKG. 2021. Peta Rata-rata Curah Hujan dan Hari Hujan periode 1991-

2020 Indonesia. Pusat Informasi Perubahan Iklim BMKG, Jakarta. 

[Indonesian] 

BNPB. 2022. Data Informasi Bencana Indonesia. Badan Nasional 

Penanggulangan Bencana. Diakses dari Pusat Data Informasi dan 

Komunikasi Kebencanaan (Pusdatinkom): https://dibi.bnpb.go.id/. 

[Indonesian]  

Cantarino I, Carrion M, Martínez-Ibáñez V, Gielen E. 2023. Improving 

landslide susceptibility assessment through frequency ratio and 

classification methods—Case study of Valencia Region (Spain). Appl 

Sci 13 (8): 5146. DOI: 10.3390/app13085146. 

Cellek S. 2021. The effect of aspect on landslide and its relationship with 

other parameters. In: Zhang Y, Cheng Q (eds.). Landslides. InTech 

Open, London. DOI: 10.5772/intechopen.99389. 

Chellamuthu SN, Ganapathy GP. 2024. Quantifying the impact of 

changing rainfall patterns on landslide frequency and intensity in the 

Nilgiris District of Western Ghats, India. Prog Dis Sci 23: 100351. 

DOI: 10.1016/j.pdisas.2024.100351. 

Chen W, Li W, Hou E, Zhao Z, Deng N, Bai H, Wang D. 2014. Landslide 

susceptibility mapping based on GIS and information value model for 

the Chencang District of Baoji, China. Arab J Geosci 7: 4499-4511. 

DOI: 10.1007/s12517-014-1369-z. 

Cheng YS, Yu TT, Son NT. 2021. Random forests for landslide prediction 

in Tsengwen River Watershed, Central Taiwan. Remote Sens 13 (2): 

199. DOI: 10.3390/rs13020199. 

Conforti M, Ietto F. 2021. Modeling shallow landslide susceptibility and 

assessment of the relative importance of predisposing factors, through 

a GIS-based statistical analysis. Geosciences 11 (8): 333. DOI: 

10.3390/geosciences11080333. 

KC D, Dangi H, Hu L. 2022. Assessing landslide susceptibility in the 

northern stretch of Arun Tectonic Window, Nepal. Civil Eng 3 (2): 

525-540. DOI: 10.3390/civileng3020031. 

Deng J, Ma C, Zhang Y. 2022. Shallow landslide characteristics and its 

response to vegetation by example of July 2013, extreme rainstorm, 

Central Loess Plateau, China. Bull Eng Geol Environ 81: 100. DOI: 

10.1007/s10064-022-02606-1. 

Diara IW, Saifulloh M, Suyarto R. 2022. Spatial distribution of landslide 

susceptibility in new road construction Mengwitani-Singaraja, Bali-

Indonesia: Based on geospatial data. Intl J Geomate 23 (90): 95-103. 

DOI: 10.21660/2022.96.3320. 

Dorairaj D, Osman N. 2021. Present practices and emerging opportunities 

in bioengineering for slope stabilization in Malaysia: An overview. 

PeerJ 9 (10): e10477. DOI: 10.7717/peerj.10477. 

Dunham AM, Kiser E, Kargel JS, Haritashya UK, Watson CS, Shugar 

DH, DeCelles PG. 2022. Topographic control on ground motions and 

landslides from the 2015 Gorkha Earthquake. Geophys Res Lett 49 

(10): e2022GL098582. DOI: 10.1029/2022GL098582. 

Efiong J, Eni DI, Obiefuna J, Etu S. 2021. Geospatial modelling of 

landslide susceptibility in Cross River State of Nigeria. Sci Afr 14: 

01032. DOI: 10.1016/j.sciaf.2021.e01032. 

Eker R, Aydin A. 2016. Landslides susceptibity assessment of forest 

roads. Eur J For Eng 2 (2): 54-60.  

Fadilah N, Arsyad U, Soma AS. 2019. Analisis tingkat kerawanan longsor 

menggunakan metode frekuensi rasio di Daerah Aliran Sungai Bialo. 

Jurnal Parennial 15 (1): 42-50. DOI: 10.24259/perennial.v15i1.6317. 

[Indonesian] 

Farooq S, Akram MS. 2021. Landslide susceptibility mapping using 

information value method in Jhelum Valley of the Himalayas. 

Arabian J Geosci 14 (10): 824. DOI: 10.1007/s12517-021-07147-7 

Gallage C, Abeykoon T, Uchimura T. 2021. Instrumented model slopes to 

investigate the effects of slope inclination on rainfall-induced 

landslides. Soils Found 61 (1): 160-174. DOI: 

10.1016/j.sandf.2020.11.006. 

Gholami M, Ghachkanlu E, Khosravi K, Pirasteh S. 2019. Landslide 

prediction capability by comparison of frequency ratio, fuzzy gamma 

and landslide index method. J Earth Syst Sci 128: 42. DOI: 

10.1007/s12040-018-1047-8. 

Gong C, Ni D, Liu Y, Li Y, Huang Q, Tian Y, Zhang H. 2024. 

Herbaceous vegetation in slope stabilization: A comparative review of 

mechanisms, advantages, and practical applications. Sustainability 16 

(17): 7620. DOI: 10.3390/su16177620. 

Gorokhovich Y, Vustianiuk A. 2021. Implications of slope aspect for 

landslide risk assessment: A case study of Hurricane Maria in Puerto 

Rico in 2017. Geomorphology 391: 107874. DOI: 

10.1016/j.geomorph.2021.107874. 

Gulbet E, Getahun B. 2024. Landslide susceptibility mapping using 

frequency ratio and analytical hierarchy process method in Awabel 

Woreda, Ethiopia. Quat Sci Adv 16: 100246. DOI: 

10.1016/j.qsa.2024.100246. 

Guo X, Fu B, Du J, Shi P, Li J, Li Z, Fu H. 2021. Monitoring and 

assessment for the susceptibility of landslide changes after the 2017 

Ms 7.0 Jiuzhaigou earthquake using the remote sensing technology. 

Front Earth Sci 9: 633117. DOI: 10.3389/feart.2021.633117. 

He W, Chen G, Zhao J, Lin Y, Qin B, Yao W, Cao Q. 2023. Landslide 

susceptibility evaluation of machine learning based on information 

volume and frequency ratio: A case study of Weixin County, China. 

Sensors 23 (5): 2549. DOI: 10.3390/s23052549. 

Hidayah A, Paharuddin, Massinai MA. 2017. Analisis rawan bencana 

longsor menggunakan metode AHP (Analytical Hierarchy Process) di 

Kabupaten Toraja Utara. Jurnal Geocelebes 1 (1): 1-4. DOI: 

10.20956/geocelebes.v1i1.1772. [Indonesian] 

Hontus AC. 2016. Excess moisture - A major reason why producing 

landlips. Sci Pap Ser Manag Econ Eng Agric Rural Dev 16 (4): 171-

180. 

Hua Y, Wang X, Li Y, Xu P, Xia W. 2020. Dynamic development of 

landslide susceptibility based on slope unit and deep neural networks. 

Landslides 18: 281-302. DOI: 10.1007/s10346-020-01444-0. 

Huang F, Ye Z, Jiang SH, Huang J, Chang Z, Chen J. 2021. Uncertainty 

study of landslide susceptibility prediction considering the different 

attribute interval numbers of environmental factors and different data-

based models. CATENA 202: 105250. DOI: 

10.1016/j.catena.2021.105250. 

Hurlimann M, Guo Z, Puig-Polo C, Medina V. 2022. Impacts of future 

climate and land cover changes on landslide susceptibility: regional 

scale modelling in the Val d'Aran region (Pyrenees, Spain). 

Landslides 19: 99-118. DOI: 10.1007/s10346-021-01775-6. 

Jacquemart M, Tiampo K. 2021. Leveraging time series analysis of radar 

coherence and normalized difference vegetation index ratios to 

characterize pre-failure activity of the Mud Creek landslide, 

California. Nat Hazards Earth Syst Sci 21: 629-642. DOI: 

10.5194/nhess-21-629-2021. 

Jaafari M, Tahmoures M, Ehteram M, Ghorbani M, Panahi F. 2022. Slope 

stabilization methods using biological and biomechanical measures. 

In: Jafari M, Tahmoures M, Ehteram M, Ghorbani M, Panahi F (eds.). 

Soil Erosion Control in Drylands. Springer, Cham. DOI: 

10.1007/978-3-031-04859-3_6. 

Jeong S, Lee K, Kim J, Kim Y. 2017. Analysis of Rainfall-Induced 

Landslide on Unsaturated Soil Slopes. Sustainability 9 (7): 1280. 

DOI: 10.3390/su9071280. 

https://doi.org/10.1007/s12665-021-09510-z
https://doi.org/10.1016/j.uclim.2023.101508
https://doi.org/10.1007/s10064-019-01639-3
https://doi.org/10.1007/s10064-019-01639-3
https://dibi.bnpb.go.id/
https://doi.org/10.3390/app13085146
https://doi.org/10.1016/j.pdisas.2024.100351
https://doi.org/10.3390/rs13020199
https://doi.org/10.3390/geosciences11080333
https://doi.org/10.3390/civileng3020031
https://doi.org/10.1007/s10064-022-02606-1
https://doi.org/10.21660/2022.96.3320
https://doi.org/10.7717/peerj.10477
https://doi.org/10.1029/2022GL098582
https://doi.org/10.1016/j.sciaf.2021.e01032
https://doi.org/10.1016/j.sandf.2020.11.006
https://doi.org/10.1007/s12040-018-1047-8
https://doi.org/10.3390/su16177620
https://doi.org/10.1016/j.geomorph.2021.107874
https://doi.org/10.1016/j.qsa.2024.100246
https://doi.org/10.3389/feart.2021.633117
https://doi.org/10.3390/s23052549
https://doi.org/10.1007/s10346-020-01444-0
https://doi.org/10.1016/j.catena.2021.105250
https://doi.org/10.1007/s10346-021-01775-6
https://doi.org/10.5194/nhess-21-629-2021
https://doi.org/10.1007/978-3-031-04859-3_6
https://doi.org/10.3390/su9071280


TIRSYAYU et al. – Land use and landslide susceptibility levels 

 

65 

Katz O, Morgan JK, Aharonov E, Dugan B. 2014. Controls on the size 

and geometry of landslides: Insights from discrete element numerical 

simulations. Geomorphology 220: 104-113. DOI: 

10.1016/j.geomorph.2014.05.021. 

Keshri D, Sarkar K, Chatto SL. 2023. Landslide susceptibility mapping in 

parts of Aglar watershed, Lesser Himalaya based on frequency ratio 

method in GIS environment. J Earth Syst Sci 133: 1. DOI: 

10.1007/s12040-023-02204-z. 

Khan I, Kainthola A, Bahuguna H, Asgher M. 2024. Comparative 

landslide susceptibility assessment using information value and 

frequency ratio bivariate statistical methods: a case study from 

Northwestern Himalayas, Jammu and Kashmir, India. Arab J Geosci 

17: 231. DOI: 10.1007/s12517-024-12022-2. 

Komadja GC, Pradhan SP, Roul AR, Adebayo B, Baptiste JH, Glodji LA, 

Onwualu AP. 2020. Assessment of stability of a Himalayan road cut 

slope with varying degrees of weathering: A finite-element-model-

based approach. Heliyon 6 (11): e05297. DOI: 

10.1016/j.heliyon.2020.e05297. 

Kurniawan R. 2019. Determination of landslide susceptibility level using 

scoring method in Pugung Area, Tanggamus. IOP Conf Ser: Mater 

Sci Eng 620 (1): 012126. DOI: 10.1088/1757-899X/620/1/012126. 

Lann T, Bao H, Lan H, Zheng H, Yan C, Peng J. 2024. Hydro-mechanical 

effects of vegetation on slope stability: A review. Sci Total Environ 

926: 171691. DOI: 10.1016/j.scitotenv.2024.171691. 

Li M, Ma C, Du C, Yang W, Lyu L. 2021. Landslide response to 

vegetation by example of July 25-26, 2013, extreme rainstorm, 

Tianshui, Gansu Province, China. Bull Eng Geol Environ 80: 751-

764. DOI: 10.1007/s10064-020-02000-9. 

Lillesand TM, Kiefer RW, Chipman JW. 2015. Remote Sensing and 

Image Interpretation (7th ed.). Wiley, New York. 

Ma S, Shao X, Xu C. 2022. Characterizing the distribution pattern and a 

physically based susceptibility assessment of shallow landslides 

triggered by the 2019 heavy rainfall event in Longchuan County, 

Guangdong Province, China. Remote Sens 14 (17): 4257. DOI: 

10.3390/rs14174257. 

Mahalingam R, Kim B. 2021. Factors affecting occurrence of landslides 

induced by the M7.8 April 2015, Nepal Earthquake. KSCE J Civil 

Eng 25: 78-91. DOI: 10.1007/s12205-020-0508-1. 

Marsujitullah, Kaligis DA, Manggau FX. 2023. Health analysis of rice 

plants based on the Normalized Difference Vegetation Index (NDVI) 

value in image of unmanned aircraft (case study of Merauke - Papua 

Selatan). Eng Technol J 8 (2): 1986-1991. DOI: 10.47191/etj/v8i2.04, 

I.F. - 7.136. 

Martinez ADI, Labib S. 2023. Demystifying normalized difference 

vegetation index (NDVI) for greenness exposure assessments and 

policy interventions in urban greening. Environ Res 220: 115155. 

DOI: 10.1016/j.envres.2022.115155. 

Meten M, Bhandary NP, Yatabe R. 2015. Effect of landslide factor 

combinations on the prediction accuracy of landslide susceptibility 

maps in the Blue Nile Gorge of Central Ethiopia. Geoenviron Dis 2: 

9. DOI: 10.1186/s40677-015-0016-7. 

Naik D, Palakuzhiyil Y. 2024. Landslide Susceptibility Mapping using 

Geospatial framework -A Study of Pinder Basin, Chamoli District, 

Uttarakhand, India. DOI: 10.21203/rs.3.rs-4006670/v1. 

Narendra BH, Siregar CA, Dharmawan IW, Sukmana A, Pratiwi, 

Pramono IB, Basuki TM, Nugroho HY, Supangat AB, Purwanto, 

Setiawan O. 2021. A review on sustainability of watershed 

management in Indonesia. Sustainability 13 (19): 11125. DOI: 

10.3390/su131911125. 

Naseer S, Haq TU, Khan A, Tanoli JI, Khan NG. Qaiser FR, Shah ST. 

2021. GIS-based spatial landslide distribution analysis of district 

Neelum, AJ&K, Pakistan. Nat Hazards 106: 965-989. DOI: 

10.1007/s11069-021-04502-5. 

Niraj K, Singh A, Shukla D. 2023. Effect of the normalized difference 

vegetation index (NDVI) on GIS-enabled bivariate and multivariate 

statistical models for landslide susceptibility mapping. J Indian Soc 

Remote Sens 51: 1739-1756. DOI: 10.1007/s12524-023-01738-5. 

Palinkas LA, Horwitz SM, Green CA, Wisdom JP, Duan N, Hoagwo K. 

2015. Purposeful sampling for qualitative data collection and analysis 

in mixed method implementation research. Adm Policy Ment Health 

42 (5): 533-544. DOI: 10.1007/s10488-013-0528-y. 

Peraturan Menteri PU No 22/PRT/M/2007 Tentang Pedoman Penataan 

Ruang. Pemerintah Indonesia, Jakarta. [Indonesian] 

Poddar I, Roy R. 2024. Application of GIS-based data-driven bivariate 

statistical models for landslide prediction: A case study of highly 

affected landslide prone areas of Teesta River basin. Quat Sci Adv 13: 

100150. DOI: 10.1016/j.qsa.2023.100150. 

Pourghasemi HR, Kornejady A, Kerle N, Shabani F. 2020. Investigating 

the effects of different landslide positioning techniques, landslide 

partitioning approaches, and presence-absence balances on landslide 

susceptibility mapping. CATENA 187: 104364. DOI: 

10.1016/j.catena.2019.104364. 

Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor 

effect analysis: Back propagation artificial neural networks and their 

comparison with Frequency Ratio and Bivariate Logistic Regression 

Modeling. Environ Mod Software 25: 747-759. 

DOI: 10.1016/j.envsoft.2009.10.016. 

Qi T, Zhao Y, Meng X, Chen G, Dijkstra T. 2021. AI-based susceptibility 

analysis of shallow landslides induced by heavy rainfall in Tianshui, 

China. Remote Sens 13 (9): 1819. DOI: 10.3390/rs13091819. 

Rahaman A, Dondapati A, Gupta S, Raj R. 2024. Leveraging artificial 

neural networks for robust landslide susceptibility mapping: A 

geospatial modeling approach in the ecologically sensitive Nilgiri 

District, Tamil Nadu. Geohazard Mech 2 (4): 258-269. DOI: 

10.1016/j.ghm.2024.07.001. 

Rashid M, Sheik M, Haque A, Siddique M, Habib M, Patwary MA. 2023. 

Salinity-induced change in green vegetation and land use patterns 

using remote sensing, NDVI, and GIS techniques: A case study on the 

southwestern coast of Bangladesh. Case Stud Chem Environ Eng 7: 

100314. DOI: 10.1016/j.cscee.2023.100314. 

Rasyid A, Bhandary N, Yatabe R. 2016. Performance of frequency ratio 

and logistic regression model in creating GIS based landslides 

susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron 

Dis 3: 19. DOI: 10.1186/s40677-016-0053-x. 

Roback K, Clark MK, West AJ, Zekkos D, Li G, Gallen SF, Godt JW. 

2018. The size, distribution, and mobility of landslides caused by the 

2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 301: 121-

138. DOI: 10.1016/j.geomorph.2017.01.030. 

Roccati A, Paliaga G, Luino F, Faccini F, Turconi L. 2021. GIS-Based 

landslide susceptibility mapping for land use planning and risk 

assessment. Land 10 (2): 162. DOI: 10.3390/land10020162. 

Rosi A, Tofani V, Tanteri L, Stefanelli CT, Agostini A, Catani F, Casagli 

N. 2018. The new landslide inventory of Tuscany (Italy) updated with 

PS-InSAR: geomorphological features and landslide distribution. 

Landslides 15: 5-19. DOI: 10.1007/s10346-017-0861-4. 

Sahrane R, Bounab A, Kharim Y. 2023. Investigating the effects of 

landslides inventory completeness on susceptibility mapping and 

frequency-area distributions: Case of Taounate province, Northern 

Morocco. CATENA 220 (B): 106737. DOI: 

10.1016/j.catena.2022.106737. 

Saputra RA, Heriyadi B. 2019. Analisis klasifikasi massa batuan dan 

potensi longsor pada area pit timur tambang terbuka PT. Allied Indo 

Coal Jaya, Kota Sawalunto, Sumatera Barat. Jurnal Bina Tambang 4 

(3): 207-217. DOI: 10.24036/bt.v4i3.105700. [Indonesian] 

Silwal B, Gyawali B, Yoshida K. 2024. Geochemical and mineralogical 

analysis of low-grade metamorphic rocks and their response to 

shallow landslide occurrence in Central Nepal. Geoenviron Dis 11: 

37. DOI: 10.1186/s40677-024-00301-9. 

Soma AS, Kubota T. 2017. The performance of land use change causative 

factor on landslide susceptibility map in Upper Ujung-Loe 

Watersheds South Sulawesi, Indonesia. J Geomat Plan 4 (2): 157-170. 

DOI: 10.14710/geoplanning.4.2.157-170.  

Sujatha E, Sudarsan J, Nithiyanantham S. 2023. A review on sustainable 

reinforcing techniques to stabilize slopes against landslides. Intl J 

Environ Sci Technol 20: 13873-13882. DOI: 10.1007/s13762-023-

04832-w. 

Tang C, Ma G, Chang M, Li W, Zhang D, Jia T, Zhou Z. 2015. Landslides 

triggered by the 20 April 2013 Lushan earthquake, Sichuan Province, 

China. Eng Geol 187: 45-55. DOI: 10.1016/j.enggeo.2014.12.004. 

Teimouri M, Nalivan O. 2020. Susceptibility zoning and prioritization of 

the factors affecting landslide using MaxEnt, Geographic Information 

System and remote sensing models (Case study: Lorestan Province). 

Hydrogeomorphology 6 (21): 155-179. 

Tesfa C, Woldearegay K. 2021. Characteristics and susceptibility zonation 

of landslides in Wabe Shebelle Gorge, south eastern Ethiopia. J Afr 

Earth Sci 182: 104275. DOI: 10.1016/j.jafrearsci.2021.104275. 

Wu W, Xu C, Wang X, Tian Y, Deng F. 2020. Landslides triggered by the 

3 August 2014 Ludian (China) Mw 6.2 earthquake: An updated 

inventory and analysis of their spatial distribution. J Earth Sci 31: 

853-866. DOI: 10.1007/s12583-020-1297-7. 

https://doi.org/10.1016/j.geomorph.2014.05.021
https://doi.org/10.1007/s12040-023-02204-z
https://doi.org/10.1007/s12517-024-12022-2
http://dx.doi.org/10.1088/1757-899X/620/1/012126
https://doi.org/10.1016/j.scitotenv.2024.171691
https://doi.org/10.1007/s10064-020-02000-9
https://doi.org/10.3390/rs14174257
https://doi.org/10.1007/s12205-020-0508-1
https://doi.org/10.1016/j.envres.2022.115155
https://doi.org/10.21203/rs.3.rs-4006670/v1
https://doi.org/10.3390/su131911125
https://doi.org/10.1007/s12524-023-01738-5
https://doi.org/10.1007/s10488-013-0528-y
https://doi.org/10.1016/j.qsa.2023.100150
https://doi.org/10.1016/j.catena.2019.104364
https://doi.org/10.3390/rs13091819
https://doi.org/10.1016/j.ghm.2024.07.001
https://doi.org/10.1016/j.cscee.2023.100314
https://doi.org/10.1186/s40677-016-0053-x
https://doi.org/10.1016/j.geomorph.2017.01.030
https://doi.org/10.1007/s10346-017-0861-4
https://doi.org/10.1016/j.catena.2022.106737
https://doi.org/10.1186/s40677-024-00301-9
https://doi.org/10.14710/geoplanning.4.2.157-170
https://doi.org/10.1007/s13762-023-04832-w
https://doi.org/10.1007/s13762-023-04832-w
https://doi.org/10.1016/j.enggeo.2014.12.004
https://doi.org/10.1016/j.jafrearsci.2021.104275
https://doi.org/10.1007/s12583-020-1297-7


ASIAN JOURNAL OF FORESTRY  9 (1): 53-66, June 2025 

 

66 

Wu X, Song Y, Chen W, Kang G, Qu R, Wang Z, Chen H. 2023. Analysis 

of geological hazard susceptibility of landslides in Muli County based 

on random forest algorithm. Sustainability 15 (5): 4328. DOI: 

10.3390/su15054328. 

Xie C, Huang Y, Li L, Li T, Xu C. 2023. Detailed Inventory and Spatial 

Distribution Analysis of Rainfall-Induced Landslides in Jiexi County, 

Guangdong Province, China in August 2018. Sustainability 15 (18): 

13930. DOI: 10.3390/su151813930. 

Ye CM, Wei R, Ge Y, Li Y, Junior J, Li J. 2022. GIS-based spatial 

prediction of landslide using road factors and random forest for 

Sichuan-Tibet Highway. J Mt Sci 19: 461-476. DOI: 10.1007/s11629-

021-6848-6. 

Yengoh GT, Dent D, Olsson L, Tengberg AE, Tucker III CJ. 2015. Use of 

the Normalized Difference Vegetation Index (NDVI) to Assess Land 

Degradation at Multiple Scales. Springer, Cham. DOI: 10.1007/978-

3-319-24112-8. 

Yu X, Zhang K, Song Y, Jiang W, Zhou J. 2021. Study on landslide 

susceptibility mapping based on rock-soil characteristic factors. Sci 

Rep 11: 15476. DOI: 10.1038/s41598-021-94936-5. 

Zhang K, Wang S, Bao H, Zhao X. 2019. Characteristics and influencing 

factors of rainfall-induced landslide and debris flow hazards in 

Shaanxi Province, China. Nat Hazards Earth Syst Sci 19 (1): 93-105. 

DOI: 10.36785/jaes.111461. 

Zhou SH, Chen G, Fang L. 2016. Distribution pattern of landslides 

triggered by the 2014 Ludian earthquake of China: Implications for 

regional threshold topography and the seismogenic fault 

identification. Geo-Information 5 (4): 46. DOI: 10.3390/ijgi5040046. 

Zhuang J, Peng J, Wang G, Javed I, Wang Y, Li W. 2018. Distribution 

and characteristics of landslide in Loess Plateau: A case study in 

Shaanxi province. Eng Geol 236: 89-96. DOI: 

10.1016/j.enggeo.2017.03.001. 

 

https://doi.org/10.3390/su15054328
https://doi.org/10.3390/su151813930
https://doi.org/10.1007/s11629-021-6848-6
https://doi.org/10.1007/s11629-021-6848-6
https://doi.org/10.1038/s41598-021-94936-5
https://doi.org/10.3390/ijgi5040046
https://doi.org/10.1016/j.enggeo.2017.03.001

