Effect of symbiotic association of rhizobia and endomycorrhizae from Moroccan arid littoral dunes on Acacia cyanophylla tolerance to drought

##plugins.themes.bootstrap3.article.main##

ABDELHAKIM HATIMI
SAIDIA TAHROUCH
BRAHIM BOUIZGARNE

Abstract

Abstract. Hatimi A, Tahrouch S, Bouizgarne B. 2018. Effect of symbiotic association of rhizobia and endomycorrhizae from Moroccan arid littoral dunes on Acacia cyanophylla tolerance to drought. Asian J For 2: 39-45. Coastal sand dunes in arid region serve as habitat of coastal biotas including rhizobia and mycorrhiza. This research aimed to investigate the effect of selected symbiotic rhizobia native from coastal dunes of Souss-Massa, Morocco, alone or in association with endomycorrhiza to improve the tolerance of Acacia cyanophylla plants to drought stress. A symbiotic indigenous endomycorrhizal fungi M, and three rhizobia isolates (i.e., two slow-growing isolates R1 (Bradyrhizobium sp. RCM6), and R2 (Bradyrhizobium sp. RLC3) and a fast-growing isolates R3 (Rhizobium sp. S21)) were inoculated to A. cyanophylla under drought stress conditions in greenhouse. Results showed that the growth and nutrition of seedlings of A. cyanophylla were drastically affected after two months in drought stress conditions. However, inoculation of the symbiotic microorganisms either alone (treatments M, RMC6, R2 or R3) or as inoculums consisting of combination of the rhizobia with the endomycorrhiza (treatments MR1, MR2 or MR3) resulted in enhanced tolerance of A. cyanophylla seedlings to drought stress. At 100% of field capacity (fc), all treatments showed a significant improvement of plant growth compared to non-inoculated plants in stress conditions. In addition, Bradyrhizobium RCM6 (R1) holds a high efficiency to improve the growth and nutrition of the host plant. Indeed, higher number of nodules/plant and higher amount of total nitrogen were recorded in the seedlings inoculated with Bradyrhizobium sp. RCM6 in comparison with plants inoculated with the two other rhizobia Bradyrhizobium sp. RLC3 (R2) and Rhizobium sp. S21 (R3), and control plants. Dual inoculation with each of the three rhizobia and the endomycorrhizal complex (M) led to higher water content (WC) and relative water content (RWC) and a significant increase in Phosphorus content of the aerial part. While positive effects were recorded for Phosphorus, no such effects were recorded for nitrogen. However, the overall results showed the importance of the use of microorganisms in the dune coastal environment particularly adequate tripartite association: rhizobia Endomycorrhizes-A. cyanophylla in enhancing tolerance to drought stress.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Aguirreolea J, Sanchez-Diaz M. 1989. CO2 evolution by nodulated roots
in Medicago sativa L. under water stress. J Plant Physiol 134: 598-
602.
Aparicio-Tejo PM, Sanchez-Diaz J, Pena I. 1980. Nitrogen fixation,
stomatal response and transpiration in Medicago sativa, Trifolium
repens and T. subterraneum under water stress and recovery. Physiol
Plant 48: 1-4.
Aroca R, Porcel R, Ruiz-Lozano JM. 2007. How does arbuscular
mycorrhizal symbiosis regulate root hydraulic properties and plasma
membrane aquaporins in Phaseolus vulgaris under drought, cold or
salinity stresses? New Phytol 173: 808-816.
Augé RM. 2001. Water relations, drought, and VA mycorrhizal
symbiosis. Mycorrhiza 11: 3-42.
Barea JM, Werner D, Azcón-Guilar C, Azcón R. 2005. Interactions of
arbuscular mycorrhiza and nitrogen-fixing symbiosis in sustainable
agriculture. In: Werner D, Newton WE (ed) Nitrogen fixation in
agriculture, forestry, ecology and the environment. Springer,
Dordrecht.
Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballest MJ, Carvajal
M, Ruiz-Lozano JM. 2012. Arbuscular mycorrhizal symbiosis
increases relative apoplastic water flow in roots of the host plant
under both well-watered and drought stress conditions. Ann Bot 109:
1009-1017.
Blanchet R, Gelfi N, Bosc M. 1977. Relation entre consommation d'eau et
production de divers types variétaux de Soja (Glycine max. L. Merr.).
Ann Agro 28: 261-275.
Bouizgarne B, Oufdou K, Ouhdouch Y. 2015. Actinorhizal and RhizobialLegume symbioses for Alleviation of abiotic stresses. In: Arora NK
(ed), Plant Microbes Symbiosis: Applied Facets, Springer, India.
Evelin H, Giri B, Kapoor R. 2012. Contribution of Glomus intraradices
inoculation to nutrient acquisition and mitigation of ionic imbalance
in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22: 203-
217
Fagbola O, Osonubi K, Mulongoy SA, Odunfa S. 2001. Effects of drought
stress and arbuscular mycorrhiza on growth of Gliricidia Sepium
(Jacg.), Walp. and Leucaena leucocephala (Lam) de wit. In simulated
eroded soil conditions. Mycorrhiza 11: 215-223
Gong M, Tang M, Chen H, Zhang Q, Feng X. 2013. Effects of two
Glomus species on the growth and physiological performance of
Sophora davidii seedlings under water stress. New Forests 44: 399-
408
Hernandez-Sebastia C, Piche Y, Desjardins Y. 1999. Water relations of
whole strawberry plantlets in vitro inoculated with Glomus
intraradices in a tripartite culture system. Plant Sci 143: 81-91.
Hatimi A. 1995. Symbiotes racinaires de trois legumineuses arborescentes
de dunes littorales de Souss-Massa. Ed. INRA, Paris, Les Colloques
77: 183-190.
Hatimi A, Tahrouch S. 2007. Caractérisations chimique, botanique et
microbiologique du sol des dunes littorales du Souss-Massa.
Biomatec Echo 2: 85-97.
Hatimi A. 1999. Effect of salinity on the association between root
symbionts and Acacia cyanophylla Lind.: growth and nutrition. Plant
Soil 216: 93-101.
Huang CY, Boyer JS, Vanderhoef LN. 1975. Limitation of acetylene
reduction (nitrogen fixation) by photosynthesis in soybean having low
water potentials. Plant Physiol 56: 228-232.
Lal B, Khanna S. 1993. Renodulation and nitrogen-fixing potential of
Acacia nilotica inoculated with Rhizobium isolates. Can J Microbiol
39: 87-91.

Marcar NE, Dart P, Sweeney C. 1991. Effect of root-zone salinity on
growth and chemical composition of Acacia ampliceps B. R. Maslin,
A. auriculiformis A. Cunn. ex Benth. and A. mangium Willd. at two
nitrogen levels. New Phytol 119: 567-573.
Marques MS, Pagano M, Scotti MRMML. 2001. Dual inoculation of a
woody legume (Centrolobium tomentosum) with rhizobia and
mycorrhizal fungi in south-eastern Brazil. Agrofor Syst 52 107-117.
Marulanda A, Porcel R, Barea J. M, Azcón R. 2007. Drought tolerance
and antioxidant activities in lavender plants colonized by native
drought tolerant or drought sensitive Glomus species. Microb Ecol 54:
543-552.
Meddich A. 1997. Ecophysiologie des mycorhizes à vésicules et arbusculs
des zones arides: effet sur la croissance, la nutrition minérale et la
tolérance du trefle (Trifolium alexandrinum) au stress hydrique. Thèse
de 3ème cycle.
Meddich A, Oihabi A, , Abbas Y, Bizid E. 2000. Mycorhizes à arbuscules
des zones arides: biodiversité et rôles dans la tolérance du trèfle
(Trifolium alexandrinum) au stress salin. Agronomie 20: 1-13.
Mnasri B, Aouani ME, Mhamdi R. 2007. Nodulation and growth of
common bean (Phaseolus vulgaris) under water deficiency. Soil Biol
Biochem 39: 1744-1750.
Naya L, Ladrera R, Ramos J, Gonzalez EM, Arrese-Igor C, Minchin FR,
Bacana M. 2007. The response of carbon metabolism and antioxidant
defenses of alfalfa to drought stress and ro the subsequent recovery of
plants. Plant Physiol 113: 259-267.
Oihabi A, Meddich A. 1996. Effet des mycorhizes à arbuscules sur la
croissance et la composition minérale du trèfle. Cahiers Agricultures
5: 382-388.
Pena JI, Sanchez-Diaz M, Aguirreolea J, Becana M. 1988. Increased stress
tolerance of nodule activity in the Medicago-Rhizobium-Glomus
symbiosis under drought. J Plant Physiol 133: 79-83.
Plenchette C, Perrin R, Duvert P. 1989. The concept of soil infectivity and
method for its determination as applied to endomycorrhizas. Can J
Bot 67: 112-115.
Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on
leaf water potential, solute accumulation, and oxidative stress in
soybean plants subjected to drought stress. J Exp Bot 55: 1743-1750.
Ramos MLG, Gordon AJ, Minchin FR, Sprent JI, Parsons R. 1999. Effect
of water stress on nodule physiology and biochemistry of a drought
tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann Bot
83: 57-63.
Rodier KR. 1984. L'anlyse de l'eau, eaux naturelles, eaux résiduaires, eau
de mer. 7ème édition, Dunod.
Romdhane SB, Aouani ME, Trabelsi M, de Lajudie P, Mhamdi R. 2008.
Selection of high nitrogen-fixing rhizobia nodulating chickpea (Cicer
arietinum) for semi-arid Tunisia. J Agron Crop Sci. 194: 413-420.
Romdhane SB, Trabelsi M, Aouani ME, de Lajudie P, Mhamdi R. 2009.
The diversity of rhizobia nodulating chickpea (Cicer arietinum) under
water deficiency as a source of more efficient inoculants. Soil Biol
Biochem 41: 2568-2572.
Ruiz-Lozano JM, Azcon R. 1997. Hyphal contribution to water uptake in
mycorrhizal plants as affected by the fungal species and water status.
Physiol Plant 95: 472-478
Ruiz-Lozano JM, Collados C, Barea JM, Azcón R. 2001. Arbuscular
mycorrhizal symbiosis can alleviate drought-induced nodule
senescence in soybean plants. New Phytol 151: 493-502.
Ruiz-Lozano JM, Porcel R, Aroca R. 2006. Does the enhanced tolerance
of arbuscular mycorrhizal plants to water deficit involve modulation
of drought-induced plant genes? New Phytol 171: 693-698.
Sanchez-Diaz M, Aguirreolea J, Goicochea MC, Antolin MC. 1995.
Limitations de la fixation symbiotique d'azote et autres aspects
physiologiques des légumineuses des zones méditerranéennes. Ed.
INRA, Paris, Les Colloques 77: 11-29.
Sanchez-Diaz M, Pardo M, Antolin M, Pena J, Aguirreolea J. 1990. Effect
of water stress on photosynthetic activity in Medicago-RhizobiumGlomus symbiosis. Plant Sci 71: 215-221.
Serraj, R, Sinclair TR, Purcell LC. 1999. Symbiotic N2 fixation response
to drought. J Exp Bot 50: 143-155.
Sheehy JE, Minchin FR, Witty JF. 1985. Control of nitrogen-fixation in a
legume nodule: An analysis of the role of oxygen diffusion in relation
to nodule structure. Ann Bot 55: 549-562.
Shoushtasi NH, Pepper IL. 1985a. Mesquite rhizobia isolated from the
Sonoran desert: Physiology and effectiveness. Soil Biol Biochem 17:
797-802.
Shoushtasi NH, Pepper L. 1985b. Mesquite rhizobia isolated from the
Sonoran desert: Competitiveness and survival in soil. Soil Biol.
Biochem 17: 803-806.
Sinclair TR, Purcell LC, Vadez V, Serraj R. 2001. Selection of soybean
(Glycine max) lines for increased tolerance of N2 fixation to drying
soil. Agronomie 21: 653-657.
Soria RD, Correa NS, Rosas SB. 1996. Effect of water stress on the GuarBradyrhizobium system using PEG 6000. Phyton-Intl J Exp Bot 58:
97-106.
Sprent JI, EK. James. 2007. Legume evolution: where do nodules and
mycorrhizas fit in? Plant Physiol 144: 575-581.
Sprent JI. 1976. Water deficits and nitrogen-fixing root nodules. In:
Kozlowski TT (ed). Water deficits and plant growth. Academic Press,
New York.
Sprent JI. 1981. Nitrogen fixation. In: Paleg LG, Aspinall D (eds): The
Physiology and Biochemistry of drought resistance in plants.
Academic Press, Sydney.
Trouvelot A, Kouch J, Gianinazzi-Pearson V. 1986. Mesure du taux de
mycorhization VA d'un système radiculaire: Recherche de méthode
d'estimation ayant une signification fonctionnelle. Les mycorhizes:
Physiologie et Génétique. 1er Séminaire, Dijon, Ed. INRA, Paris.
Wu QS, Xia RX, Zou YN. 2008. Improved soil structure and citrus
growth after inoculation with three arbuscular mycorrhizal fungi
under drought stress. Eur J Soil Biol 44: 122-128.
Wu QS, Zou YN,. Xia RX, Wang MY. 2007. Five Glomus species affect
water relations of Citrus tangerine during drought stress. Bot Stud 48:
147-154.
Zou N, Dart PJ, Marcar N. E. 1995. Interaction of salinity and Rhizobial
strain on growth and N2-fixation by Acacia ampliceps. Siol Biol
Biochem 27: 409-413.