Hydrolases secreting, heavy metal-resistant halophilic bacteria isolated from metal dumpsites

##plugins.themes.bootstrap3.article.main##

CHIOMA FLORENCE MGBODILE
UZOAMAKA OTUTU
STEPHANIE ONUOHA
UCHENNA EZE
TOBECHUKWU UGWUOJI
OBIANUJU NNABUIFE
TOCHUKWU NWAMAKA T. NWAGU

Abstract

Abstract. Mgbodile CF, Otutu U, Onuoha S, Eze U, Ugwuoji T, Nnabuife O, Nwagu TNT. 2022. Hydrolases secreting, heavy metal-resistant halophilic bacteria isolated from metal dumpsites. Asian J Trop Biotechnol 19: 11-19. Microorganisms with the potential to accumulate heavy metals are currently under investigation for application in environmental detoxification. The current study aimed to isolate heavy metal tolerant bacteria from metal dump sites. The soil samples were sourced from two metal dumpsites in Eastern Nigeria. The pH and metal content of the samples were evaluated. Microorganisms were screened for tolerance of lead, copper, silver and chromium. Isolated strains were characterized and identified by molecular techniques. All isolates grew in 1000 ppm Pb, Cu and Cr. The optimal temperature for their growth was 37oC. While isolates B and C grew optimally at 12.5% NaCl, the growth rate increased for isolate A (i.e., 7.5%>12.5%>15%). The three isolates produced extracellular protease, and inulinase isolates B and C produced amylase, while isolating A produced xylanase. Isolate A, B, and C were identified as Pseudomonas asiaticaSphingobacterium caeni, and Burkholderia cenocepacia. The bacteria were resistant to a wide range of antibiotics, including ampicillin (30 mcg/disc), ceporex (10 mcg/disc), and streptomycin (30 mcg/disc). These results indicate that the bacterial strains have the potential as sources of inoculants for the bioremediation of heavy metal contaminated environments and application in various industrial processes where metal-resistant organisms and their hydrolases are required.

##plugins.themes.bootstrap3.article.details##

References
Abd WM, Shahin, RR, Khater HA, Ali MA. 2013. Isolation and identification of heavy-metal resistant soil bacteria. Am-Eur J Agric Environ Sci 13 (6): 831-838. DOI: 10.21608/jssae.2013.51953.
Abo-Amer AE, Abu-Gharbia MA, Soltan E-S M, El-Raheem WMA. 2014. Isolation and molecular characterization of heavy metal-resistant Azotobacter chroococcum from agricultural soil and their potential application in bioremediation. Geomicrobiology 31 (7): 551-561. DOI: 10.1080/01490451.2013.850561.
Ahirwar KN, Gupta G, Singh R, Singh V. 2016. Isolation, identification and characterization of heavy metal resistant bacteria from industrial affected soil in Central India. Intl J Pure Appl Biosci 4 (6): 88-93. DOI: 10.18782/2320-7051.2424.
Aka RJN, Babalola OO. 2017. Identification and characterization of cr-, cd-, and ni-tolerant bacteria isolated from mine tailings. Bioremed J 21 (1): 1-19. DOI: 10.1080/10889868.2017.1282933.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25 (17): 3389-3402. DOI: 10.1093/nar/25.17.3389.
Arora NK, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P, Bharti C. 2020. Halo-tolerant plant growth promoting Rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26: 69. DOI: 10.1016/j.jare.2020.07.003.
Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45 (4): 493-496. DOI: 10.1093/ajcp/45.4_ts.493.
Chellaiah E. 2018. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Appl Water Sci 8: 154. DOI: 10.1007/s13201-018-0796-5.
Cheng JF, Guo JX, Bian YN, Chen Z, Li CL, Li XD, Li YH. 2019. Sphingobacterium athyrii sp. nov., a cellulose- and xylan-degrading bacterium isolated from a decaying fern (Athyrium wallichianum Ching). Intl J Syst Evol 69 (3): 752-760. DOI: 10.1099/ijsem.0.003231.
Chihomvu P, Stegmann P, Pillay M. 2014. Identification and characterization of heavy metal resistant bacteria from the Klip river. Intl J Agric Food Vet Agric Eng 8 (11): 1107- 1117.
Chouari R, Paslier DL, Daegelen P, Ginestet P, Weissenbach J, Sghir A. 2005. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7: 1104-1115. DOI: 10.1111/j.1462-2920.2005.00795.x.
Demain AL. 2000. Microbial biotechnology. Trends Biotechnol 18: 26-31. DOI: 10.1016/S0167-7799(99)01400-6.
Feng H, Zeng Y, Huang Y. 2014. Sphingobacterium paludis sp. nov., isolated from wetland soil. Intl J Syst Evol 64 (10): DOI: 10.1099/ijs.0.064915-0.
Frostgard A, Baath E, Tunlid A. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25 (6): 723-730. DOI: 10.1016/0038-0717(93)90113-P.
Gautam PK, Gautam RK, Banerjee S, Chattopadhyaya MC, Pandey JD. 2016. Heavy metals in the environment: Fate, transport, toxicity and remediation technologies. In: Pathania D (eds). Heavy Metals: Sources, Toxicity and Remediation Techniques. Nava Science Publishers, Hauppauge, New York.
Gurave NA, Korde VV, Dhas SS, Disale M. 2015. Isolation and identification of heavy metal resistant bacteria from petroleum soil of Loni, Ahmednagar. Eur J Exp Biol 5 (12): 6-11.
Hall CM, Busch JD, Shippy K, Allender CJ, Kaestli M, Mayo M, Sahl JW, Schupp JM, Colman RE, Keim P, Currie BJ, Wagner DM. 2015. Diverse Burkholderia species isolated from soils in the Southern United States with no evidence of B. pseudomallei. PLoS One 10 (11): e0143254. DOI: 10.1371/journal.pone.0143254.
Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B. 2011. Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92: 2355-2388. DOI: 10.1016/j.jenvman.2011.06.009.
Hussein H, Moawad H, Farag S. 2004. Isolation and characterization of pseudomonas resistant to heavy metal contaminants. Arabian J Biotechnol 7 (1): 13-22. DOI: 10.2225/vol7-issue1-fulltext-2.
Irawati W, Riak S, Sopiah N, Sulistia S. 2017. Heavy metal tolerance in indigenous bacteria isolated from the industrial sewage in Kemisan River, Tangerang, Banten, Indonesia. Biodiversitas 18: 1481-1486. DOI: 10.13057/biodiv/d180426.
Irawati W, Winoto SE, Kusumawati L, Pinontoan R. 2021. Indigenous multiresistant bacteria of IrC4 isolated from Indonesia as a heavy metal bioremediation agent. Biodiversitas 22: 3349-3355. DOI: 10.13057/biodiv/d220641.
Irwin JA. 2020. Overview of extremophiles and their food and medical applications. In: Salwan R, Sharma V (eds). Physiological and Biotechnological Aspects of Extremophiles. Academic Press, Cambridge. DOI: 10.1016/B978-0-12-818322-9.00006-X.
Jiang CY, Sheng XF, Qian M, Wang QY. 2008. Isolation and characterization of a heavy metal-resistant Burkholderiasp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72 (2): 157-64. DOI: 10.1016/j. Chemosphere.2008.02.006.
Jiang J, Pan C, Xiao A, Yang X, Zhang G. 2017. Isolation, identification, and environmental adaptability of heavy metal- resistant bacteria from ramie rhizosphere soil around mine refinery. Biotech 7: 5. DOI: 10.1007/s13205-017-0603-2.
Juhaeti T, Syarif F, Hidayati N. 2004. Inventarization of potential plant for phytoremediation on degraded land and water mined. Biodiversitas 6: 131-133. DOI: 10.13057/biodiv/d060106.
Kathiravan MN, Karthick R, Muthukumar K. 2011. Ex situ bioremediation of Cr (VI) contaminated soil by Bacillus sp.: batch and continuous studies. Chem Eng J 169: 107-115. DOI: 10.1016/j.cej.2011.02.060.
Khosro I, Nadiya J, Fataneh P, Golnaz, R, Jamileh F. 2013. Heavy metal resistance by bacterial strains. Sch Res Libr 2: 60-63.
Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120. DOI: 10.1007/BF01731581.
Korcan SE, Konuk M, Erdo?mu? SF. 2015. Beneficial usages of halophilic microorganisms. In: Maheshwari D, Saraf M (eds). Halophiles. Sustainable Development and Biodiversity, Vol 6. Springer, Cham, Switzerland. DOI: 10.1007/978-3-319-14595-2_10.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35: 1547-1549. DOI: 10.1093/molbev/msy096.
Liu XX, Hu X, Cao Y, Pang WJ, Huang JY, Guo P, Huang L. 2019. Biodegradation of Phenanthrene and heavy metal removal by acid-tolerant Burkholderia fungorum FM-2. Front Microbiol 10: 408. DOI: 10.3389/fmicb.2019.00408.
Liu Y, Tie B, Li Y, Lei M, Wei X, Liu X, Du H. 2018. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Ecotoxicol Environ Safe 163: 223-229. DOI: 10.1016/j.ecoenv.2018.07.081.
Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H. 2015. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156: 62-69. DOI: 10.1016/j.jenvman.2015.03.024.
Mendez MO, Nielson JW, Maier RM. 2008. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol 74: 3899-3907. DOI: 10.1128/AEM.02883-07.
Mohamed RM, Abor-Amer AE. 2012. Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. J Basic Microbiol 52: 53-65. DOI: 10.1002/jobm.201100133.
Moreno M, Perez D, Garcia MT, Mellado E. 2013. Halophilic bacteria as a source of novel hydrolytic enzymes. Life (Basel) 3 (1): 38-51. DOI: 10.3390/life3010038.
Munawar N, Engel PC. 2013. Halophilic enzymes: Characteristics, structural adaptation and potential applications for biocatalysis. Curr Biotechnol 2 (4): 15-16. DOI : 10.2174/18722083113076660033.
Neethu CS, Mujeeb-Rahiman KM, Saramma AV, Mohamed-Hatha AA. 2015. Heavy metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic. Canad J Microbiol 61 (6): 429-435. DOI: 10.1139/cjm-2014-0803.
Nguyen TT, Lama S, Ainala SK, Sankaranarayanan M, Chauhan AS, Kim JR, Park S. 2021. Development of Pseudomonas asiatica as a host for the production of 3-hydroxypropionic acid from glycerol, Biores Technol 329: 124867. DOI: 10.1016/j.biortech.2021.124867.
Noura, Salih KM, Jusuf NH, Hamid AA, Yusoff WM. 2009. High prevalence of Pseudomonas species in soil samples from Ternate Island-Indonesia. Pak J Biol Sci 12 (14): 1036-1040. DOI: 10.3923/pjbs.2009.1036.1040.
Pacwa-Plociniczak M, Plociniczak T, Yu D, Kurola JM, Sinkkonen A, Piotrowska-Seget Z, Romantschuk M. 2018. Effect of Silene vulgaris and heavy metal pollution on the microbial diversity in long-term contaminated soil. Water Air Soil Pollut 229: 13. DOI: 10.1007/s11270-017-3655-3.
Patel S, Saraf M. 2015. Perspectives and application of halophilic enzymes. In: Maheshwari D., Saraf M (eds). Halophiles. Sustainable Development and Biodiversity, Vol 6. Springer, Cham, Switzerland. DOI: 10.1007/978-3-319-14595-2_15.
Raja EC, Selvam GS, Omine K. 2009. Isolation, Identification and Characterization of Heavy Metal Resistant Bacteria from Sewage. International Joint Symposium on Geodisaster Prevention & Geoenvironment in Asia, Fukuoka.
Rhodes KA, Schweizer HP. 2016. Antibiotic resistance in Burkholderia species. Drug Resist Updat 28: 82-90. DOI: 10.1016/j.drup.2016.07.003.
Samanta A, Bera P, Khatun M, Sinha C, Pal P, Lalee A, Mandal A. 2012. An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. J Microbiol Biotechnol Res 2 (1): 178-189.
Sharma KP, Frenkel A, Balkwill L D. 2000. A new Klebsiella planticola strain (cd-1) grows an aerobically at high cadmium concentrations and precipitates cadmium sulphide. Appl Environ Microbiol 66: 3083-3087. DOI: 10.1128/AEM.66.7.3083-3087.2000.
Sheng F, Xia J, Jiang C,Yanhe L, Meng Q. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and accumulation of rape. Environ Pollut 156: 1164-1170. DOI: 10.1016/j.envpol.2008.04.007.
Sinegani AAS, Younessi N. 2017. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. J Glob Antimicrob Resist 10: 247-255. DOI: 10.1016/j.jgar.2017.05.012.
Singh P, Jain K, Desai C, Tiwari O, Madamwar D. 2019. Microbial Community Dynamics of Extremophiles/Extreme Environment. In: Das S, Dash HR (eds). Microbial Diversity in the Genomic Era. Academic Press, Cambridge. DOI: 10.1016/B978-0-12-814849-5.00018-6.
Singh V, Chauhan PK, Kanta R, Dhewa T, Kumar V. 2010. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Intl J Pharm Sci Rev Res 3 (2): 164-167.
Sulowicz S, Plociniczak T, Piotrowska-Seget Z, Kozdroj J. 2011. Significance of birch and bushgrass for establishment of microbial heteroptrophic community in a metal-mine spoil heap. Water Air Soil Pollut 214: 205-218. DOI: 10.1007/s11270-010-0417-x.
Sun J, Zhang Q, Zhou J, Wei QP. 2014. Il- lumina Amplicon Sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site. Plos One 9 (10): 111744. DOI: 10.1371/journal.pone.0111744.
Sun LN, Zhang J, Chen Q, He J, Li SP. 2013. Sphingobacterium caeni sp. nov., isolated from activated sludge. Intl J Syst Evol Microbiol 63 (6): 2260-2264. DOI: 10.1099/ijs.0.046987-0.
Thavamani P, Megharaj M, Naidu R. 2015. Metal-tolerant PAH degrading bacteria: Development of suitable test medium and effect of cadmium and its availability on PAH biodegradation. Environ Sc Pollut Res 22: 8957-8968. DOI: 10.1007/s11356-013-1850-3.
Tohya M, Watanabe S, Teramoto K, Uechi K, Tada T, Kuwahara-Arai K, Kinjo T, Maeda S, Nakasone I, Zaw NN, Mya S, Zan KN, Tin HH, Fujita J, Kirikae T. 2019. Pseudomonas asiatica sp. nov., isolated from hospitalized patients in Japan and Myanmar. Intl J Syst Evol Microbiol 69 (5):1361-1368. DOI: 10.1099/ijsem.0.003316.
Torres Perez MP, Deimer VR, Alexander PC. 2019. Bioremediation of mercury and nickel by endophytic bacteria of aquatic macrophytes. Rev Colomb Biotecnol 21 (2): 36-44. DOI: 10.15446/rev.colomb.biote.v21n2.79975.
Veras BO, dos Dantos YQ, Diniz KM, Carelli GS, dos Santos EA. 2018. Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60. F1000 Res 7: 1704. DOI: 10.12688/f1000research.16542.1.
Verma T, Srinath T, Gadpayle RU, Ramtake PW, Hans RK, Garg SK. 2001. Chromate tolerant bacteria isolated from tannery effluent. Bioresour Technol 78: 31-35. DOI: 10.1016/S0960-8524(00)00168-1.
Waditee-Sirisattha T, Kageyama H, Takabe T. 2016. Halophilic microorganism resources and their applications in industrial and environmental biotechnology. AIMS Microbiol 2 (1): 42-54. DOI: 10.3934/microbiol.2016.1.42.
Wang J, Chen C. 2009. Biosorbents for heavy metals removal and their future. Biotechnol Adv 27: 195-226. DOI: 10.1016/j.biotechadv.2008.11.002.
Zulkali MM, Ahmad AL, Norulakmal NH. 2006. Oryza sativa Husk as heavy metal adsorbent: optimization with lead as model solution. Bioresour Technol 97: 21-25. DOI: 10.1016/j.biortech.2005.02.007.