Effect of alkaline delignification on physico-chemical and combustion properties of bean chaff briquette

##plugins.themes.bootstrap3.article.main##

ADEGOKE IDOWU ABIMBOLA
IGE AYODEJI RAPHEAL
BAMISAYE ABAYOMI
ELINGE COSMOS MOKI
OLUBUNMI O. AYODELE

Abstract

Abstract. Abimbola AI, Rapheal IA, Abayomi B, Moki EC, Ayodele OO. 2021. Effect of alkaline delignification on physico-chemical and combustion properties of bean chaff briquette. Asian J Trop Biotechnol 19: 20-27. Adopting lignocellulose-rich agro-waste materials for briquette production could be regarded as a better alternative energy source and also helps to ameliorate the challenges associated with deforestation and agro-waste disposal. This study examined the effects of alkali pretreatment on briquettes produced from bean chaffs. The proximate analysis, Energy Dispersive X-ray Fluorescence (EDXRF), Fourier-Transform Infrared (FTIR) analysis, Scanning electron microscopy (SEM), physical analysis and combustion properties were determined for the briquettes produced. The mean moisture content of 3.52±0.10% and 5.81±0.01% were recorded for Treated Bean Chaff (TBC) and Untreated Bean Chaff (UBC) briquettes, respectively. A high heating value of 24.18±0.12 MJ/kg was recorded for TBC compared to 21.12±0.01 MJ/kg of UBC briquette samples. Furthermore, it was observed that alkali pretreatment reduced the percentage of Potential Toxic Element (PTE) concentration in the treated sample, as shown by EDXRF. The FTIR results reveal surface modification in the fiber matrix shown by the C-O band shift from 1013 cm-1 observed in TBC to 1010 cm-1 recorded in UBC. In contrast, SEM shows clear disruption in the biomass matrix due to the alkali pretreatment process. The findings of this study show that the alkaline pretreated bean chaff briquettes have a great potential to be used as biomass fuel.

##plugins.themes.bootstrap3.article.details##

References
Abayomi B, Rapheal IA, Olaitan BM. 2021. Performance comparison of carbonized and un-carbonized neem leaves briquette. Intl J Adv Acad Res 7 (6): 50-59. DOI: 10.46654/ij.24889849.e767950.
Akhtar MN, Sulong AB, Radzi MF, Ismail NF, Raza MR, Muhamad N, Khan MA. 2016. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Nat Sci: Mater Intl 26 (6): 657-664. DOI: 10.1016/j.pnsc.2016.12.004.
Ali MU, Liu G, Yousaf B, Ullah H, Abbas Q, Munir MAMA. 2019. systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ Geochem Health 41 (3): 1131-1162. DOI: 10.1007/s10653-018-0203-z.
Amirta R, Nafitri SI, Wulandari R, Yuliansyah, Suwinarti W, Candra KP, Watanabe T. 2016.Comparative characterization of Macaranga species collected from secondary forests in East Kalimantan for biorefinery of unutilized fast growing wood. Biodiversitas17: 116-123. DOI: 10.13057/biodiv/d170117.
ASTMS. 2019. American Society for Testing and Materials Standard: Standard Test Methods for Gross Calorific Value of Coal and Coke (ASTM S), D3177-89 (2019).
ASTMS. 2021. American Society for Testing and Materials Standard: Standard Test Methods for Proximate Analysis of Coal and Coke (ASTM S), D3172-13 (2021).
Bamisaye A, Rapheal IA. 2021. Effect of binder type on the NaOH-treated briquettes produced from banana leaves. Biomass Conv Bioref 2021: 1-9. DOI: 10.1007/s13399-021-01771-9.
Bensah EC, Mensah M. 2013. Chemical pretreatment methods for the production of cellulosic ethanol: Technologies and innovations. Intl J Chem Eng 2013: 719607. DOI: 10.1155/2013/719607.
Brand MA, Jacintho RC, Anthunes, R Alexandro BC. 2017. Production of briquettes as a tool to optimize the use of waste from rice cultivation and industrial processing. Renew Energy 111: 116-123. DOI: 10.1016/j.renene.2017.03.084.
Conde-Mejia C, Jimenez-Gutierrez A, El-Halwagi MA. 2012. Comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf Environ Prot 90 (3): 189-202. DOI: 10.1016/j.psep.2011.08.004.
Deepak KB, Manujesh BJ, Vivek J, Yashas BK. 2019. Development and study of fuel briquettes from areca leaves: A potential renewable energy source. AIP Conf Proc 2080: 03004. DOI: 10.1063/1.5092907.
Demirbas A. 2013. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30: 21930. DOI: 10.1016/j.pecs.2003.10.004.
Elinge CM, Oyibo MC, Birnin-Yauri, AU, Ige AR, Yakubu Y, Ogunleye AO. 2020. Enhancing properties of water hyacinth biomass briquettes by mercerization process. Intl Res J Pure Appl Chem 21 (18): 43-55. DOI: 10.9734/irjpac/2020/v21i1830270.
Fernandes ERK, Marangoni C, Souza O, Sellin N. 2013. Thermo-chemical characterization of banana leaves as a potential energy source, Energy Conv Manag 75: 603-608 DOI:10.1016/j.enconman.2013.08.008.
Hordofa GD, Etisa D. 2019. Effect of lime and compost application on the growth and yield of common bean (Phaseolus Vulgaris L.): A review. Adv Oceanograph Mar Biol 1 (3): 1-9. DOI: 10.33552/AOMB.2019.01.000512.
Husain Z, Zainac Z, Abdullah Z. 2002. Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass Bioenergy 22: 505-509. DOI: 10.1016/S0961-9534(02)00022-3.
Ion RM, Zaharia P, Fierascu RC, Ion N. 2007. Analysis of stainless steel samples by Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometry. International Conference on Advanced Technologies and Materials, Galati, Romania.
Jigisha P, Channiwala SA, Ghosal GK. 2007. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86: 1710-1719. DOI: 10.1016/j.fuel.2006.12.029.
Jyothsna S, Manjula G, Sateesh S, Nageswara AS. 2020. Qualitative elemental analysis of selected potential anti-asthmatic medicinal plant taxa using EDXRF technique. Heliyon 6 (2): e03260. DOI: 10.1016/j.heliyon.2020.e03260.
Karunanithy C, Wang Y, Muthukumarappan K, Pugalendhi S. 2012. Physiochemical characterization of briquettes made from different feedstocks. Biotechnol Res Intl 2012 (2): 165202. DOI: 10.1155/2012/165202.
Krizan P, Soos L, Vukelic DA. 2009. Study of impact technological parameters on the briquetting process. Facta Universitatis Ser: Working Living Environ Prot 6: 39-47.
Lubwama M, Yiga VA. 2017. Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda, Renew Energy 111: 532-542. DOI: 10.1016/j.renene.2017.04.041.
Maciejewska A, Veringa H, Sanders J, Peteve SD. 2006. Co-firing of biomass with coal: constraints and role of biomass pretreatment, Office for Official Publications of the European Communities, Luxembourg
Mahalingam A, Nagappan B, Jayaram P, Nagalingeswara RB. 2019. Investigating the physio chemical properties of densified biomass pellet fuels from fruit and vegetable market waste. Arab J Sci Eng 45: 563-574. DOI: 10.1007/s13369-019-04294-8.
Mahyati AR, Paton M, Djide N, Taba DP. 2013. Biodegradation of lignin from corn cob by using a mixture of Phanerochaete chrysosporium, Lentinus edodes and Pleurotus ostreatus. Intl J Sci Res 2 (11): 79-82.
Maninder R, Singh K, Grover S. 2012. Using agricultural residues as a biomass briquetting: An alternativesource of energy. J Electr Electr Engi 1 (5): 11-15. DOI: 10.9790/1676-0151115.
Matali S, Rahman NA, Idris SS, Yaacob N, Alias AB. 2016. Lignocellulosic biomass solid fuel properties enhancement via torrefaction. Proced Eng 148: 671-678. DOI: 10.1016/j.proeng.2016.06.550.
Ndiema CKW, Manga PN, Ruttoh CR. 2002. Densification characteristics of rice straw briquettes. J Inst Energy 75 (502): 11-13.
Oyibo MC, Elinge CM, Birnin-Yauri AU, Ige AR, Ogundele OA, Dabai MD. 2020. Combustion profiles of fuel briquettes produced from alkali treated and untreated sugarcane bagasse. Am J Eng Res 9 (3): 268-274.
Rapheal IA, Moki EC, Gusau HL, Abimbola AI, Harrison O. 2018. Effect of binder on physico-chemical properties of fuel briquettes produced from watermelon peels. AASCIT JEnergy 5 (2): 23-27.
Santhebennur JV, Jogttappa N. 2012. Assessment of agro-industrial wastes proximate,ultimate, SEM and FTIR analysis for feasibility of solid bio-fuel production. Univers J Environ Res Technol 2 (6): 575-581.
Wilaipon P. 2007. Physical Characteristics of maize cob briquette under moderate die pressure. Am J Appl Sci 4: 995-998. DOI: 10.3844/ajassp.2007.995.998.
Zhao X, Zhang L, Liu D. 2010. Pretreatment of siam weed stem by several chemical methods for increasing the enzymatic digestibility. Biotechnol J 5 (5): 493-504. DOI: 10.1002/biot.200900284.
Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deng Y. 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99 (6): 1320-1328. DOI: 10.1002/bit.21712.