Biogas production from POME (Palm Oil Mill Effluent) with the addition of EPOB compost (Empty Palm Oil Bunches)

##plugins.themes.bootstrap3.article.main##

GRISELDA HAPPY RAMADHANI
EDWI MAHAJOENO
ARI SUSILOWATI

Abstract

Abstract. Ramadhani GH, Mahajoeno E, Susilowati A. 2020. Biogas production from POME (Palm Oil Mill Effluent) with the addition of EPOB compost (Empty Palm Oil Bunches). Bioteknologi 17: 22-26. Palm oil mill effluent (POME) is mostly produced by palm oil factories, resulting in environmental pollution. One strategy is by processing waste into a biogas product. The purpose of this research is (1) to make compost from EPOB to produce good compost; (2) to determine the level of biogas (CH4) produced from various combinations of POME substrates. Composting was carried out with six treatments. Each treatment consisted of a composition of materials such as EPOB, mushroom seeds [Volvariella volvaceae (Bulliard ex Fries) Singer], and POME with different concentrations. The method used in composting is the Berkeley method. The mixed material is put in a trash bag and stirred periodically for two weeks in the composting process. The four treatments carried out the experimental design to determine biogas (CH4) level. Each treatment consisted of POME, activated sludge, and compost with different concentrations. The process begins with mixing the material into the digester, then every 10th, 20th, and 30th day the gas is taken to measure the CH4 content. CH4 levels were obtained by taking gas with a syringe needle on the cover of the digester, then transferred to a flacon bottle. The flacon bottle containing the gas was measured by the Gas Chromatography and Mass Spectroscopy (GCMS) method. The GCMS gas detector is equipped with an FID to detect gas levels and gas type. The results will be displayed in the form of GCMS output and can be seen from the residence time range to determine the type of gas and concentration. The study resulted in the best compost in treatment five, which looks good from a physical point of view, with a 48% water content and 18.25% C/N ratio. The biogas content (CH4), which produces the highest gas, is 36.206% in treatment 2 (T2) with a composition of 70% POME, 20% activated sludge, and 10% compost.

##plugins.themes.bootstrap3.article.details##

References
Adekunle KF Okolie JA. 2015. A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 6 (1): 205-212. DOI: 10.4236/abb.2015.63020.
Arifiyanto D, Basyuni M, Sumardi, Putri LAP, Siregar ES, Risnasari I, Syahputra I. 2017. Short Communication: Occurrence and cluster analysis of palm oil (Elaeis guineensis) fruit type using two-dimensional thin layer chromatography. Biodiversitas 18: 1487-1492. DOI: 10.13057/biodiv/d180427.
Faizal I, Emdi A. 2017. Analysis of flowering gene inpalm oil (Elaeis guineensis). Asian J Agric 1: 53-58. DOI: 10.13057/asianjagric/g010201.
Gijzen HJ. 1987. Anaerobic Digestion of Cellulostic Waste by Rumen Derived Process. Koninklijke Bibliotheek, Den Haag.
Hosseini SE, Bagheri G, Khaleghi M, Wahid MA. 2015. Combustion of biogas released from palm oil mill effluent and the effects of hydrogen enrichment on the characteristics of the biogas flame. J Combust 1 (1): 1-12. DOI: 10.1155/2015/612341.
Kaal EEJ, Field JA, Joice TW. 1995. Increasing ligninolitic enzyme activities in several white rot Basidiomycetes by nitrogen sufficient media. Biosour Technol 53 (1): 133-139. DOI: 10.1016/0960-8524(95)00066-N.
Kresnawaty I, Susanti I, Siswanto, Panji T. 2008. Optimasi produksi biogas dari limbah lateks cair pekat dengan penambahan logam. J Menar Perkebunan 76 (1): 23-35. [Indonesian]
Mahajoeno E, Lay BW, Sutjahjo SH, Siswanto. 2008. Potensi limbah cair pabrik minyak kelapa sawit untuk produksi biogas. Biodiversitas 9 (1): 48-52. DOI: 10.13057/biodiv/d090111. [Indonesian]
Metcalf, Eddy. 2003. Wastewater Engineering: Treatment, Disposal and Reuse 4th Ed. McGraw-Hill, Singapore
Munazah AR, Soewando P. 2008. Penyisihan organik melalui 2 tahap pengolahan dengan modifikasi ABR dan constructed wetland pada industri rumah tangga. J Teknik Lingkungan ITB 4 (4): 1-7. [Indonesian]
Nasrul, Maimun T. 2009. Pengaruh penambahan jamur pelapuk putih (White Rot Fungi) pada proses pengomposan tandan kosong kelapa sawit. J Rekayasa Kimia dan Lingkungan 7 (2): 194-199. [Indonesian]
Pardamean M. 2017. Kupas Tuntas Agribisnis Kelapa Sawit. Penebar Swadaya, Jakarta. [Indonesian]
Rajagukguk DP. 2018. Isolasi dan Identifikasi Bakteri Pendegradasi Limbah Cair Pabrik Kelapa Sawit sebagai Alternatif Agen Dekolorisasi Limbah. [Hon Thesis]. Program Sarjana Intitut Pertanian Bogor, Bogor. [Indonesian]
Ritonga AM, Masrukhi. 2017. Optimasi kandungan metana biogas kotoran sapi menggunakan berbagai jenis adsorben. J Rona Teknik Pertanian 10 (2): 8-17. DOI: 10.17969/rtp.v10i2.8493. [Indonesian]
Sarono S, Suparno O, Suprihatin S, Hasanudin U. 2016. The performance of biogas production from POME at different temperature. Intl J Technol 7 (8): 1-6. DOI: 10.14716/ijtech.v7i8.6896.
Shah FA, Mahmood Q, Shah MM, Pervez A, Asad SA. 2014. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. Sci World J 1 (1) : 1-15. DOI: 10.1155/2014/183752.
Strom PF. 1985. Effect of temperature on bacterial species diversity in thermophilic solidwaste composting. Appl Environ Microbiol 50: 899-905. DOI: 10.1128/aem.50.4.899-905.1985.
Yahya Y, Tamrin, Triyono S. 2017. Produksi biogas dari campuran kotoran ayam, kotoran sapi, dan rumput gajah mini (Pennisetum purpureum cv. Mott) dengan Sistem Batch. J Teknik Pertanian Lampung 6 (3): 151-160. DOI: 10.23960/jtep-l.v6i3.151-160. [Indonesian]