Bioethanol production from banana’s tuber (Musa paradisiaca) with hydrolysis using a-amylase and glucoamylase enzyme

##plugins.themes.bootstrap3.article.main##

INTAN PERMATA UTAMI
EDWI MAHAJOENO
ARI SUSILOWATI

Abstract

Abstract. Utami IP, Mahajoeno E, Susilowati A. 2020. Bioethanol production from banana’s tuber (Musa paradisiaca) with hydrolysis using a-amylase and glucoamylase enzyme. Bioteknologi 17: 76-81. Energy consumption has increased in lockstep with economic expansion and population development, resulting in the depletion of fossil fuel supplies. Bioethanol is a non-fossil fuel that may be produced from rich biological resources in Indonesia, one of which is the banana tuber (Musa paradisiaca L.). The purpose of this study is to find the maximum reducing sugar levels in the banana tuber hydrolysis using a concentration ratio of a-amylase and glucoamylase enzymes, as well as to create the highest amount of ethanol utilizing a variety of baker's yeast concentrations (Saccharomyces cerevisiae Meyen ex E.C. Hansen). A Completely Randomized Design (CRD) with two components was used in this study. The first component was the ratio of a-amylase and glucoamylase concentrations, while the second element was the concentration of baker's yeast. The banana tuber was hydrolyzed to a maximum of 0.2 grams using a-amylase and glucoamylase at various concentration ratios (0:0; 100:0; 75:25; 50:50, 25: 75; 0: 25), followed by fermentation with baker’s yeast (7.5 mg, 10 mg and 12.5 mg). The amount of reducing sugar created during hydrolysis was determined using the DNS method, whereas the amount of ethanol produced was determined using AOAC tables. ANOVA was used to evaluate the data, and significant differences were found using Duncan's Multiple Range Test (DMRT) at a 95% confidence level. The results indicated that the ratio of 75% a-amylase to 25% glucoamylase resulted in the maximum sugar reduction of 26.17 mg/mL. The highest ethanol concentrations were obtained by combining 75% a-amylase and 25% glucoamylase with 12.5 mg 7.98% baker's yeast. A 7.5 mg baker's yeast produced substantially more ethanol than 10 mg or 12.5 mg baker's yeast.

##plugins.themes.bootstrap3.article.details##

References
Admianta, Noer Z, Fitrianida. 2001. Pengaruh Jumlah Yeast terhadap Kadar Alkohol pada Fermentasi Kulit Nanas dengan Menggunakan Fermentor. [Skripsi]. Institut Teknologi Nasional Malang, Malang. [Indonesian]
Anonymous. 2011. Potensi Bonggol Pisang dalam Pembuatan Bioetanol. http://www.bonggol pisang.com. Diakses 5 November 2011. [Indonesian]
Aransiola EF. 2006. Production of baker's yeast (Saccharomyces cerevisiae) from raw cassava starch hydrolyzates in a bioreaktor under batch process. Biotech 5 (1): 98-103. DOI: 10.3923/biotech.2006.98.103.
Azizah N, Al-Baarri AN, Mulyani S. 2012. Pengaruh lama fermentasi terhadap kadar alkohol, pH, dan produksi gas pada proses fermentasi bioetanol dari whey dengan substitusi kulit nanas. J Aplikasi Teknologi Pangan 1 (2): 116-125. [Indonesian]
Gusmawarni SR, Budi MSP, Sediawan WB, Hidayat M. 2009, Pengaruh suhu pada hidrolisis bonggol pisang dalam rangka pembuatan bioetanol. Prosiding Seminar Tjipto Utomo 2009: 1-7. [Indonesian]
Hambali E. 2007. Teknologi Bioenergi. PT. AgroMedia Pustaka, Ciganjur. [Indonesian]
Hasanah H, Jannah A, Fasya AG. 2012. Pengaruh lama fermentasi terhadap kadar alkohol tape singkong (Manihot utilissima). Alchemy 2 (1): 68-79. DOI: 10.18860/al.v0i0.2294. [Indonesian]
Horwits W, Franklin. 1975. Analysis of the Association of Official Analitical Chemist. Second Edition. Washington, US.
Jayanti RT. 2011. Pengaruh pH, Suhu Hidrolisis Enzim ?-Amilase dan Konsentrasi Ragi Roti untuk Produksi Etanol Menggunakan Pati Bekatul. [Skripsi]. Jurusan Biologi FMIPA Universitas Sebelas Maret, Surakarta. [Indonesian]
Judoamidjojo. 1992. Teknologi Fermentasi. Rajawali Pers, Jakarta. [Indonesian]
Jumari A, Wusana AW, Handayani, Indika A. 2009. Pembuatan etanol dari jambu mete dengan metode fermentasi. Ekuilibrium 7 (2): 48-54. DOI: 10.20961/ekuilibrium.v7i2.49508. [Indonesian]
Komarayati S, Winarni I, Djarwanto. 2011. Pembuatan bioetanol dari empulur sagu (Metroxylon spp.) dengan menggunakan enzim. J Penelitian Hasil Hutan 29 (1): 20-32. DOI: 10.20886/jphh.2011.29.1.20-32. [Indonesian]
Kusmiyati. 2010. Comparison of iles-iles and cassava tubers as a Saccharomyces cerevisiae substrate fermentation for bioethanol production. Nusantara Bioscience 2: 7-13. DOI: 10.13057/nusbiosci/n020102.
Miller GL. 1959. Use of dinitrosalicyclic acid reagen for determination of reducing sugar. Anal Chem 31: 426-429. DOI: 10.1021/ac60147a030.
Mucaramah, I. 2012. Pembuatan Etanol dari Substrat Bekatul dengan Menggunakan Enzim Glukoamilase dan Ragi Roti. [Skripsi]. Jurusan Biologi FMIPA Universitas Sebelas Maret, Surakarta. [Indonesian]
Musanif J. 2008. Bioetanol. Institut Teknologi Bandung, Bandung. [Indonesian]
Purba E. 2009. Hidrólisis Pati Ubi Kayu (Manihot Esculenta) dan Ubi Jalar (Ipomea batatas) menjadi Glukosa secara Cold Process dengan Enzim Acid Fungal Amilase dan Glukoamilase [Skripsi]. Program Sarjana Fakultas Teknik, Universitas Lampung. Lampung. [Indonesian]
Rahmi, Syuryawati, Zubachtirodin. 2007. Teknologi Budidaya Gandum. Balai Penelitian Serealia, Maros. [Indonesian]
Reed G, Nagodawithana TW. 1991. Baker’s Yeast Production. In: Reed G, Nagodawithana TW (eds.). Yeast Technology. Springer, Dordrecht. DOI: 10.1007/978-94-011-9771-7_7.
Retno E, Enny KA, Fadilah. 2009. Studi awal reaksi simultan dan fermentasi tepung sorghum (Sorghum bicolor (L.) Moench) dengan katalis enzim glucoamylase dan yeast. Ekuilibrium 8 (2): 7-11. [Indonesian]
Risnoyatiningsih S. 2011. Hidrolisis pati ubi jalar kuning menjadi glukosa secara enzimatis. J Teknik Kimia 5 (2): 417-424. [Indonesian]
Roukas T. 1996. Continuous bioetanol production from nonsterilized carob pod extract by immobilized Saccharomyces cerevisiae on mineral kissiris using a two-reactor system. J Appl Biochem Biotechnol 59 (3): 299-307. DOI: 10.1007/BF02783571.
Sari RI, Noverita, Yulneriwarni. 2008. Pemanfaatan jerami padi dan alang-alang dalam fermentasi etanol menggunakan kapang trichoderma viride dan khamir Saccharomycess cerevisiae. Vis vitalis 1 (2): 1978-9513. [Indonesian]
Schlegel HG. 1994. Mikrobiologi Umum 202. Edisi ke-6. Universitas Gajah Mada Prees, Yogyakarta. [Indonesian]
Stark WH. 1954. Alcoholic fermentation of grain. In: Underkofler LA, Hickey RJ (eds.). Part I-Alcoholic Fermentation and Its Modifications. Chemical Publishing Company, US.
Sukandar U, Achmad A, Lindawati S, Yadi T. 2010. Sakarifikasi pati ubi kayu menggunakan amilase Aspergilus niger ITB CC L74. J Teknik Kimia Indonesia 10 (1): 1-8. DOI: 10.5614/jtki.2011.10.1.1. [Indonesian]
Tambunan LA. 2008. Bioetanol antitumpah. Trubus 309: 24-25. [Indonesian]
Triwahyuningsih N, Rahmat A. 2006. Pemanfaatan energi biomassa sebagai biofuel: Konsep sinergi dengan ketahanan pangan di Universitas Muhammadiyah Yogyakarta. Fakultas Pertanian Universitas Muhammadiyah Yogyakarta, Yogyakarta. [Indonesian]
Wijaya IMAS, Athawan IGKA, Sari AN. 2012. Potensi nira kelapa sebagai bahan baku bioetanol. J Bumi Lestari 12 (1): 85-92. [Indonesian]
Winarno FG. 1995. Enzim Pangan. Gramedia, Jakarta. [Indonesian]
Winarno FG. 2002. Kimia Pangan dan Gizi. Gramedia, Jakarta. [Indonesian]
Yuanita. 2008. Pabrik Sorbitol dari Bonggol Pisang (Musa Paradisiaca) dengan Proses Hidrogenasi Katalitik. [Thesis]. Institut Teknologi Sepuluh November, Surabaya. [Indonesian]
Yunianta, Sulistyo T, Apriliastuti, Estiasih T, Wulan SN. 2010. Hidrolisis secara Sinergis Pati Garut (Maranthaarundinaceae L.) oleh Enzim ?-Amilase, Glukoamilase, dan Pullulanase, untuk Produksi Sirup Glukosa. [Skripsi]. Fakultas Teknologi Pertanian, Universitas Brawijaya, Malang. [Indonesian]