Green synthesis of copper nanoparticles using Musa acuminata aqueous extract and their antibacterial activity

##plugins.themes.bootstrap3.article.main##

ALIYU MUHAMMAD
ASHIRU UMAR
ABUBAKAR UMAR BIRNIN-YAURI
HANNATU ABUBAKAR SANNI
COSMOS MOKI ELINGE
AYODEJI RAPHEAL IGE
MURTALA MAIDAMMA AMBURSA

Abstract

Abstract. Muhammad A, Umar A, Birnin-Yauri AU, Sanni HA, Elinge CM, Ige AR, Ambursa MM. 2023. Green synthesis of copper nanoparticles using Musa acuminata aqueous extract and their antibacterial activity. Asian J Trop Biotechnol 20: 10-16. Green synthesis is a convenient and affordable alternative to the synthesis of copper nanoparticles. The objective of the present study was to synthesize copper nanoparticles via the green method, using Musa acuminata (banana) fruit extracts as a reducing agent with copper sulfate serving as a precursor. The antibacterial activities of the synthesized CuNps were also tested. Fruits extracts of M. acuminata were used to synthesize with CuSO4(aq) as a precursor. The synthesized nanoparticles were characterized using Uv-Vis, FTIR, XRD, SEM, and EDX techniques. The synthesis results showed that the nanoparticles were of Face-Centered Cubic (FCC) structure with high stability. The average diameter of the synthesized copper nanoparticles is 18nm. Uv-Vis, scanning electron microscope, X-ray diffraction, energy disperses X-ray, and Fourier transforms infrared spectroscopy established that the formed nanoparticles are copper nanoparticles. The antibacterial activity of the synthesized nanoparticles was also tested using pathogenic bacteria Escherichia coli and Staphylococcus aureus. The results showed that copper nanoparticles were promising antibacterial agents.

##plugins.themes.bootstrap3.article.details##

References
Ahmed S, Saifullah M, Ahmad B, Swami L, Ikram, S. 2015. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9 (1): 1-7. DOI: 10.1016/j.jrras.2015.06.006.
Arya, A, Gupta, K, Chundawat, TS, Vaya D. 2018. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl 9: 7879403.
Asghar MA, Zahir E, Shahid SM. 2018. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LW 90: 98-107.
Bonde S. 2011. A biogenic approach for green synthesis of silver nanoparticles using extract of Foeniculum vulgare and its activity against Staphylococcus aureus and Escherichia coli. Nusantara Biosci 3: 59-63. DOI: 10.13057/nusbiosci/n030201.
Brust M, Kiely CJ. 2002. Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloids Surf A: Physicochem Eng Asp 202 (2-3): 175-186. DOI: 10.1016/s0927-7757(01)01087-1.
Chakraborty N, Banerjee J, Chakraborty P, Banerjee A, Chanda C, Ray K. 2022. Green synthesis of copper/copper oxide nanoparticles and their applications: A review. 15: 187-215. DOI: 10.1080/17518253.2022.2025916.
Chandraker SK, La M, Ghosh MK, Tiwari V, Ghorai TK, Shukla R. 2020. Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill. and study of their photocatalyticand antibacterial activities. Nano Express 1: 010033. DOI: 10.1088/2632-959X/ab8e99.
Chung IM, Rahuman A, Marimuthu S. 2017. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med 14: 18-24. DOI: 10.3892/etm.2017.4466.
Dadgostar N. 2008. Investigations on Colloidal Synthesis of Copper Nanoparticles in a Two-phase Liquid-liquid System. [Thesis]. University of Waterloo, Waterloo, Ontario. [Canada].
Delma MT, Rajan MJ. 2016. Green synthesis of copper and lead nanoparticles using Zingiber officinale stem extract. Intl J Sci Res Pub 6: 134-137.
Ebrahimi K, Shiravand H, Mahmoudvand H. 2017. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. MARMARA Pharm J 21 (4): 866-871. DOI: 10.12991/mpj.2017.31.
Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ. 2001. Environmental copper: Its dynamics and human exposure issues. J Toxicol Environ Health B 4: 341-394. DOI: 10.1080/109374001753146207.
Ghaderian SM, Ravandi AAG. 2012. Accumulation of Copper and other heavy metals by plants growing on Sarcheshmeh Copper Mining Area, Iran. J Geochem Expl 2012: 25-32. DOI: 10.1016/J.GEXPLO.2012.06.022.
Gnanasangeetha D, Prathipa V. 2019. Zinc oxide nanoparticles for water remediation in agriculture. Intl J Mech Eng Technol 10 (1): 1547-1554.
Gnanasangeetha D, Sarala D. 2015. Green synthesis of benovolent ZnO narods using Emblica officinalis. Asian J Chem 27 (8): 3054-3056. DOI: 10.14233/ajchem.2015.18870.
Gnanasangeetha, D, Suresh M. 2020. A review on green synthesis of metal and metal oxide nanoparticles. Nat Environ Pollut Technol Intl Quart Sci J 19 (5): 1789-1800 DOI: 10.46488/NEPT.2020.v19i05.002.
Hailemariam G. 2011. Kinetic Study of Silver Ions Bioreduction for the Synthesis of Silver Nanoparticles and their Antibacterial Activity. [Thesis]. Haramaya University, Haramaya. [Ethiopoia]
Issaabadi Z, Nasrollahzadeh M, Sajadi MS. 2017. Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J Clean Prod 1: 3584-3591. DOI: 10.1016/j.jclepro.2016.10.109.
Jadoun S, Arif R, Jangid NK, Meena RK. 2021. Green synthesis of nanoparticles using plant extracts: A review. Environ Chem Lett 19: 355-374. DOI: 10.1007/s10311-020-01074-x.
Jaehoon L, Kim DK, Kang W. 2006. Preparation of ClI Nanoparticles from ClI Powder Dispersed in 2-Propanol by Laser Ablation. Bull Kor Chem Soc 27: 1869. DOI: 10.5012/bkcs.2006.27.11.1869.
Jeong J, Woo S, Kim D, Lim S, Kim JS, Shin H, Xia Y. 2008. Moon controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Func Mater 18 (5): 679-686. DOI: 10.1002/adfm.200700902.
Joseph AT, Prakash P, Narvi SS. 2016. Phytofabrication and characterization of copper nanoparticles using Allium sativum and its antibacterial activity. Intl J Sci Eng Technol 4: 463-472.
Kalainila P, Subha V, Ravindran RSE, Sahadevan R. 2014. Synthesis and characterization of silver nanoparticle from Erythrina indic. Asian J Pharm Clin Res 7 (2): 39-43.
Kaur P, Thakur R, Chaudhury A. 2016. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev 9: 33-38. DOI: 10.1080/17518253.2016.1141238.
Khani R, Roostaei B, Bagherzade G, Moudi M. 2018. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq 255: 541-549. DOI: 10.1016/j.molliq.2018.02.010.
Khodaie M, Ghasemi N. 2018. Green synthesis and characterization of copper nanoparticles using Eryngium campestre leaf extract. Bulgarian Chem Commun 50: 244-250.
Michael GEH. 2012. Biosynthesis of Copper Nanoparticles Using Some Plant Leaf Extracts, their Characterization and Antibacterial Activity. [Thesis]. Haramaya University. Haramaya. [Ethiopoia]
Moskovits M. Vlckova B. 2005. Adsorbate-induced silver nanoparticle aggregation kinetics. J Phys Chem B 109 (31): 14755-14758. DOI: 10.1021/jp051177o.
Murthy HC, Desalegn A, Kassa T, Abebe B, Assefa T. 2020. Synthesis of green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. leaf extract: Antimicrobial properties. J Nanomater 2020: 3924081.
Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV. 2017. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Intl J Biol Macromol 95: 1064-1071. DOI: 10.1016/j.ijbiomac.2016.09.114.
Nasrollahzadeh M, Mohammad SS. 2015. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3 + 2] cycloaddition of azides and alkynes at room temperature. J Colloid Interf Sci 457: 141-147. DOI: 10.1016/j.jcis.2015.07.004.
Nasrollahzadeh M, Momeni SS, Sajadi SM. 2017. Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. J Colloid Interf Sci 506: 471-477. DOI: 10.1016/j.jcis.2017.07.072.
Rajesh KM, Ajitha B, Reddy AK, Suneetha Y, Reddy PR. 2018. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 154: 593-600. DOI: 10.1016/j.ijleo.2017.10.074.
Rupareli JP, Chatterjee AK, Duttagupta SP, Mukherji S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia 4: 707-771. DOI: 10.1016/j.actbio.2007.11.006.
Sable N, Gaikwad S, Bonde S, Gade A, Rai M. 2012. Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticillata. Nusantara Biosci 4: 45-49. DOI: 10.13057/nusbiosci/n040201.
Saif S, Tahir A, Chen Y. 2016. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6: 209. DOI: 10.3390/nano6110209.
Sarala P. 2015. Surficial geochemical exploration methods. In: Mayer WD, Lahtinen R, O'Brien H (Eds.). Mineral Deposits of Finland. Elsevier, Amsterdam. DOI: 10.1016/B978-0-12-410438-9.00027-3.
Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A, Dasgupta D, Acharya K. 2020. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens Culinaris. Nanomaterials 2020: 10. DOI: 10.3390/nano10020312.
Shende S, Ingle AP, Gade A, Rai M. 2015. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31: 865-873. DOI: 10.1007/s11274-015-1840-3.
Thakur S, Sharma S, Rai R. 2018. Green synthesis of copper nanoparticles using Asparagus adscendens Roxb. root and leaf extract and their antimicrobial activities. Intl J Curr Microbiol Appl Sci 7 (4): 683-694. DOI: 10.20546/ijcmas.2018.704.077.
Theivasanthi T, Alagar M. 2011. Nano sized copper particles by electrolytic synthesis and characterizations. Intl J Phys Sci 6 (15): 3726-3735.
Valodkar M, Jadeja RN, Thounaojam MC, Devkar RV, Thakorea S. 2011. Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Mater Chem Phys 128: 83-89. DOI: 10.1016/j.matchemphys.2011.02.039.
Yedurkar S, Maurya C, Mahanwar PA. 2017. Biological approach for the synthesis of copper oxide nanoparticles by Ixora coccineas leaf extract. J Mater Environ Sci 2017: 1173-1177.