The deleterious effects of chitosan application on red chili pepper growth and capsaicin biosynthesis under drought stress

##plugins.themes.bootstrap3.article.main##

MUHAMMAD ABDUL AZIZ
RIZKITA RACHMI ESYANTI
KARLIA MEITHA
FENNY MARTHA DWIVANY

Abstract

Abstract. Aziz MA, Esyanti RR, Meitha K, Dwivany FM. 2022. The deleterious effects of chitosan application on red chili pepper growth and capsaicin biosynthesis under drought stress. Asian J Trop Biotechnol 19: 52-61. The production of red chili pepper is often impeded by drought. Chitosan is considered as a promising alternative natural fertilizer and defense elicitor. This study aimed to investigate the effect of chitosan on red chili plant growth and capsaicin biosynthesis under drought stress. At the onset of the generative phase, the plant was subjected to 1 mg mL-1 chitosan, 50% drought, or chitosan-drought treatment. Observations were made on several growth parameters, yield, PAL expression, PAL activity, and capsaicin content. The results showed that chitosan-drought treatment significantly decreased plant growth and yield. The PAL gene expression was up-regulated around 129-fold higher than control, followed by increased PAL activity and capsaicin content about 1.22 and 1.39-fold higher than control, respectively. PAL activity and capsaicin content on chitosan-drought treated plants were lower than on individual chitosan applications. Therefore, we suggested that the double treatment of chitosan-drought might decrease red chili pepper production and capsaicin content. Interestingly, the individual chitosan treatment significantly increased PAL expression level, PAL activity, and capsaicin content compared to other treatments. Furthermore, it was suggested that chitosan might play a role in the red chili plant defense system involving capsaicin biosynthesis through the phenylpropanoid pathway.

##plugins.themes.bootstrap3.article.details##

References
Ali EF, El-Shehawi AM, Ibrahim OHM, Abdul-Hafeez EY, Moussa MM, Hassan FAS. 2021. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiol Biochem 161 (2021): 166-175. DOI: 10.1016/j.plaphy.2021.02.008.
Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W. 2011. Morphological, physiological, and biochemical responses of plants to drought stress. Afr J Agric Res 6 (9): 2016-2032. DOI :10.5897/AJAR10.027.
Aziz MA, Esyanti RR, Meitha K, Dwivany FM, Chotimah HH. 2020. Chitosan suppresses the expression level of WRKY17 on red chili (Capsicum annuum) plant under drought stress. Indones J Biotechnol 25 (1): 52-60. DOI: 10.22146/ijbiotech.55016.
Aziz MA, Wahyuni S, Dwivany FM, Esyanti RR. 2021. Peningkatan kadar capsaicin tanaman Capsicum annum cv. Lado pada kondisi kekeringan menggunakan kitosan. Menara Perkebunan 89 (2): 91-99. DOI: 10.22302/iribb.jur.mp.v89i2.423. [Indonesian]
Bistgani ZE, Siadat SA, Bakhshandeh A, Pirbalouti AG, Hashemi M. 2017. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J 5 (5): 407-415. DOI: 10.1016/j.cj.2017.04.003.
Chookhongkha N, Miyagawa S, Jirakiattikul Y, Photchanchai S. 2012. Chili growth and seed productivity as affected by chitosan. International Conference on Agriculture Technology and Food Sciences (ICATFS), 17-18 November 2012.
Dorji K, Behboudian MH, Zegda-dominguez JA. 2005. Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Sci Hortic 104 (2): 137-149. DOI: 10.1016/j.scienta.2004.08.015.
Dzung NA, Khanh VTP, Dzung TT. 2011. Research on the impact of chitosan oligomers on biophysical characteristics, growth, development, and drought resistance of coffee. Carbohydr Polym 84: 751-755. DOI: 10.1016/j.carbpol.2010.07.066.
El-Tanahy AMM, Mahmoud AR, Mona MA, Ali AH. 2012. Effect of chitosan doses and nitrogen sources on the growth, yield, and seed quality of cowpea. Aust J Basic Appl Sci 6 (4): 115-121.
Esyanti RR, Dwivany FM, Mahani S, Nugrahapraja H, Meitha K. 2019. Foliar application of chitosan enhances growth and modulates expression of defense genes in chili pepper (Capsicum annuum L.). Aust J Crop Sci 13 (1): 55-60. DOI: 10.21475/ajcs.19.13.01.p1169.
Golldack D, Li C, Mohan H, Probst N. 2014. Tolerance to drought and salt stress in plants: Unrevealing the signal networks. Front Plant Sci 5: 1-10. DOI: 10.3389/fpls.2014.00151.
Gonzalez-Zamora A, Sierra-Campos E, Luna-Ortega JG, Perez-Morales R, Ortiz JC, Garcia-Hernandez JL. 2013. Characterization of different capsicum varieties by evaluation of their capsaicinoids content by high-performance liquid chromatography, determination of pungency and effect of high temperature. Molecules 18 (11): 13471-13486. DOI: 10.3390/molecules181113471.
Him TR, Radhouane L. 2015. Growth and yield responses of two Tunisian pepper (Capsicum annuum L.) varieties to salinity and drought stress. Intl J Innov Sci Res 14: 159-167.
Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Gargano M, Faoro F. 2009. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ Exp Bot 66 (3): 493-500. DOI: 10.1016/j.envexpbot.2009.01.004.
Jang E, Gu E, Hwang B, Lee C, Kim J. 2012. Chitosan stimulates calcium uptake and enhances the capability of the Chinese cabbage plant to resist soft rot disease caused by Pectobacterium carotovorum spp. Carotovorum. Korean J Hortic Sci Technol 30 (2): 137-143. DOI: 10.7235/hort.2012.12013.
Jeeatid N, Techawongstien S, Suriharn B, Chanthai S, Bosland PW. 2017. Influence of water stresses on capsaicinoid production in hot pepper (Capsicum chinense Jacq.) cultivars with different pungency levels. Food Chemistry 245: 792-797. DOI: 10.1016/j.foodchem.2017.11.110.
Karimi S, Abbaspour H, Sinak JM, Makarian H. 2012. Evaluation of drought stress and foliar chitosan on biochemical characterizes of castor bean (Ricinus communis L.). Res J Biol Sci 7 (3): 117-122. DOI: 10.3923/rjbsci.2012.117.122.
Khan AL, Shin JH, Jung HY, Lee IJ. 2014. Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions. Sci Hortic (Amsterdam) 175: 167-173. DOI: 10.1016/j.scienta.2014.06.008.
Khan W, Prithiviraj B, Smith DL. 2003. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160: 859-863. DOI: 10.1078/0176-1617-00905.
Kim DS, Hwang BK. 2014. An important role of the pepper phenylalanine ammonia-lyase gen (PAL1) in salicylic acid-dependent signaling of the defence response to microbial pathogens. J Exp Bot 65 (9): 2295-2306. DOI: 10.1093/jxb/eru109.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ct method. Methods 25: 402-408. DOI: 10.1006/meth.2001.1262.
Mahmood T, Rana RM, Ahmar S, Saeed S, Gulzar A, Khan MA, Wattoo FM, Wang X, Branca F, Mora-Poblete F, Mafra GS, Du X. 2021. Effect of drought stress on capsaicin and antioxidant contents in pepper genotypes at reproductive stage. Plants 10: 1286. DOI: 10.3390/plants10071286.
Malekpoor F, Pirbalouti AG, Salimi A. 2016. Effect of foliar application of chitosan on morphological and physiological characteristics of basil under reduced irrigation. Res Crop 17 (2): 354-359. DOI: 10.5958/2348-7542.2016.00060.7.
Malerba M, Cerana R. 2016. Chitosan effects on plant system. Intl J Mol Sci 17 (7): 996. DOI: 10.3390/ijms17070996.
Maser P, Leonhardt N, Schroeder JL. 2018. The clickable guard cell: electronically linked model of guard cell signal transduction pathways. Schroader Laboratory, UCSD. http://labs.biology.ucsd.edu/schroeder/clickablegc.html.
Mejia-Teniente L, Duran-Flores FD, Chapa-Oliver AM, Torres-Pacheco I, Cruz-Hernandez A, Gonzalez-Chavira MM, Ocampo-Valazquez RV, Guevara-Gonzalez RG. 2013. Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Intl J Mol Sci 14 (5): 10178-10196. DOI: 10.3390/ijms140510178.
Mondal MMA, Puteh AB, Dafader NC, Rafii MY, Malek MA. 2013. Foliar application of chitosan improves growth and yield in maize. J Food Agric Environ 11 (2): 520-523.
Phimchan P, Techawongstien S, Chanthai S, Bosland PW. 2012 Impact of drought stress on the accumulation of capsaicinoids in capsicum cultivars with different initial capsaicinoid levels. Hortic Sci 47 (9): 1204-1209. DOI: 10.21273/hortsci.47.9.1204.
Pichyangkura R, Chadchawan S. 2015. Biostimulant activity of chitosan in horticulture. Sci Hortic (Amsterdam) 196: 49-65. DOI: 10.1016/j.scienta.2015.09.031.
Salachna P, Zawadzi?ska A. 2014. Effect of chitosan on plant growth, flowering, and corms yield of potted freesia. J Ecol Eng 15 (3): 97-102. DOI: 10.12911/22998993.1110223.
Solichatun, Putri TA, Mudyantini W, Pitoyo A. 2022. Effect of seed priming using KCl on the growth and proline accumulation of paprika (Capsicum annuum) growing at different water availability. Asian J Trop Biotechnol 19 (1): 1-6. DOI: 10.13057/biotek/c190101.
Sung Y, Chang YY, Ting NL. 2005. Capsaicin biosynthesis in water-stressed hot pepper fruits. Bot Bull Acad Sin 46 (1): 35-42. DOI: 10.7016/BBAS.200501.0035.
The Indonesian Ministry of Agriculture. 2015. Statistik Produksi Hortikultura 2014 [Horticultural Production Statistics in 2014]. Indonesian Ministry of Agriculture, Jakarta. [Indonesian]
The Indonesian Ministry of Agriculture. 2016. Outlook Komoditas Pertanian Sub Sektor Hortikultura: Cabai [Outlook Agricultural Commodities Horticulture Sub Sector: Chili]. Indonesian Ministry of Agriculture, Jakarta. [Indonesian]
Veloso J, Prego C, Varela MM, Carballeira R, Bernal A, Merino F, Diaz J. 2013. Properties of capsaicinoids for the control of fungi and oomycetes pathogenic to pepper. Plant Biol 16 (1): 177-185. DOI: 10.1111/j.1438-8677.2012.00717.x.
Zamljen T, Zupanc V, Slatnar A. 2020. Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agric Water Manag 234: 106104. DOI: 10.1016/j.agwat.2020.106104.