Antimicrobial potential and cytotoxicity of endophytic fungi crude extracts from Ricinus communis of Tanzania

##plugins.themes.bootstrap3.article.main##

NEEMA SAIDI SHEMNKANDE
SYLVESTER LEONARD LYANTAGAYE
FULGENCE NTANGERE MPENDA

Abstract

Abstract. Shemnkande NS, Lyantagaye SL, Mpenda FN. 2023. Antimicrobial potential and cytotoxicity of endophytic fungi crude extracts from Ricinus communis of Tanzania. Asian J Trop Biotechnol 20: 69-78. The study aimed to assess the antimicrobial potential and cytotoxicity of crude extracts from endophytic fungi found in Ricinus communis L. from Tanzania. The researchers isolated and identified fifty-one fungi species from the leaves and roots of R. communis. The isolates were morphologically characterized, considering color, size, shape, elevation, margin, and density parameters. The isolates were further analyzed using Sanger sequencing and bioinformatics tools to determine their phylogenetic relationships and identify the isolates. Two techniques were deployed to evaluate the antimicrobial potential: disc diffusion and microdilution. The disc diffusion method measured the inhibition zones formed by the fungi extracts against selected bacterial strains (Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. In comparison, the microdilution technique determined the crude extracts' Minimum Inhibitory Concentrations (MIC) against the bacterial strains. Cytotoxicity of the crude extracts was evaluated using the brine shrimp lethality assay; Brine shrimp larvae were exposed to the extracts to evaluate their potential toxicity. The study successfully isolated 51 fungi species from R. communis and observed significant morphological variation. Four endophytic fungi (Penicillium menonorum, Curvularia verruculosa, Aspergillus niger and Aspergillus aculeatinus) exhibited potent antibacterial activity against B. subtilis, E. coli, P. aeruginosa, and S. aureus, with low minimum inhibitory concentrations (3.125 µg/mL to 0.098 µg/mL). Cytotoxicity tests on brine shrimp larvae indicated the crude extracts' non-toxicity, suggesting their potential as safe therapeutic agents. The findings suggest that endophytic fungi from R. communis possess potential therapeutic applications against drug-resistant pathogens, warranting further investigation of their bioactive compounds and broader biotechnological uses.

##plugins.themes.bootstrap3.article.details##

References
Abdulwehab SA, El-Nagerabi SAF, Elshafie AE. 2015. Leguminicolous fungi associated with some seeds of Sudanese legumes. Biodiversitas 16 (2): 269-280. DOI: 10.13057/biodiv/d160223.
Aboul-Maaty NA-F, Oraby HA. 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull Natl Res Cent 43: 1-10. DOI: 10.1186/s42269-019-0066-1.
Amina B, Sana G, Atef J, Laid D, Noreddine KC. 2017. Antibacterial activity of Aspergillus isolated from different Algerian ecosystems. Afr J Biotechnol. 16: 1699-1704. DOI: 10.5897/AJB2017.16086.
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. 2019. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 9: 1-13. DOI: 10.1186/s13104-017-3001-2.
Aziz NH, Zainol N. 2018. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery. IOP Conf Ser Mater Sci Eng. 342: 24-39. DOI: 10.1088/1757-899X/342/1/012028.
Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M, Lee YS. 2015. Penicillium menonorum: A novel fungus to promote growth and nutrient management in cucumber plants. Mycobiology 43: 49-56. DOI: 10.5941/MYCO.2015.43.1.49.
Baggio D, Ananda-Rajah MR. 2021. Fluoroquinolone antibiotics and adverse events. Aust Prescr 44: 161-164. DOI: 10.18773/austprescr.2021.035.
Bangert M, Molyneux DH, Lindsay SW, Fitzpatrick C, Engels D. 2017. The cross-cutting contribution of the end of neglected tropical diseases to the sustainable development goals. Infect Dis Poverty 6 (2017): 1-20. DOI: 10.1186/s40249-017-0288-0.
Cassell GH, Mekalanos J. 2001. Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. J Am Med Assoc 285: 601-605. DOI: 10.1001/jama.285.5.601.
Díaz GV, Zapata PD, Villalba LL, Fonseca MI. 2019. Evaluation of new xylanolytic-producing isolates of Aspergillus from Misiones subtropical rainforest using sugarcane bagasse. Arab J Basic Appl Sci 26: 292-301. DOI: 10.1080/25765299.2019.1622922.
Elijah JP, Somadina CR, Arazu AV, Godfrey N, Ogwuegbu MC, Cosmas S. 2020. Phytochemical and toxicity analysis of Ricinus communis. Asian J Biol 10: 34-41. DOI: 10.9734/ajob/2020/v10i330109.
Fair RJ, Tor Y. 2014. Perspectives in medicinal chemistry antibiotics and bacterial resistance in the 21st Century. Biomolecules 13: 25-64. DOI: 10.4137/PMC.S14459.
Fitzpatrick C, Engels D. 2016. Leaving no one behind: A neglected tropical disease indicator and tracers for the Sustainable Development Goals. Intl Health 8 (Suppl 1): 15-18. DOI: 10.1093/inthealth/ihw002.
Gautam AK. 2014. Diversity of fungal endophytes in some medicinal plants of Himachal Pradesh, India. Arch Phytopathol Plant Prot 47 (5): 537-544. DOI: 10.1080/03235408.2013.813678.
Gautam AK, Avasthi S. 2019. Fungal endophytes: Potential biocontrol agents in agriculture: 241-283. In: Kumar J, Singh AK, Choudhary KK (eds). Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology. Woodhead Publishing, Cambridge. DOI: 10.1016/b978-0-12-817004-5.00014-2.
Gautam AK, Kant M, Thakur Y. 2013. Isolation of endophytic fungi from Cannabis sativa and study their antifungal potential. Arch Phytopathol Plant Prot 46: 627-635. DOI: 10.1080/03235408.2012.74969.
Gavazzi G, Herrmann F, Krause KH. 2004. Aging and infectious diseases in the developing world. Clin Infect Dis 39: 83-91. DOI: 10.1086/421559.
Gouda S, Das G, Sen SK, Shin H. 2016. Endophytes: A treasure house of bioactive compounds of medicinal importance. Molecules 7: 1-8. DOI: 10.3389/fmicb.2016.01538.
Gurib-Fakim A. 2006. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med 27: 1-93. DOI: 10.1016/j.mam.2005.07.008.
Hadiza A, Mudi SY, Naibi ZM. 2014. Brine shrimps lethality assay of the extract produced by endophytic fungi isolated from the root of Lowsonia inermis. BMC Biotechnol 45: 76-81.
Hajrah N, Abdul WM, Sabir J, Al-Garni SMS, Sabir M, El-Hamidy SMA, Saini KS, Bora RS. 2018. Antibacterial activity of Ricinus communis L. against bacterial pathogens Escherichia coli and Klebsiella oxytoca as evaluated by transmission electron microscopy. Biotechnol Equip 32: 686-691. DOI: 10.1080/13102818.2018.1451778.
Hallmann J, Berg G, Schulz B. 2007. Isolation procedures for endophytic microorganisms: 299-319. In: Schulz BJE, Boyle CJC, Sieber TN (Eds). Microbial Root Endophytes. DOI: 10.1007/3-540-33526-9_17.
Idris A, Al-Tahir I, Idris E. 2013. Antibacterial activity of endophytic fungi extracts from the medicinal plant Kigelia africana. Egypt Acad J Biol Sci G Microbiol 5: 1-9. DOI: 10.21608/eajbsg.2013.16639.
Jeewon R, Ittoo J, Mahadeb D, Jaufeerally-Fakim Y, Wang HK, Liu AR. 2013. DNA based identification and phylogenetic characterisation of endophytic and saprobic fungi from Antidesma madagascariense, a medicinal plant in Mauritius. J Mycol 2013: 1-10. DOI: 10.1155/2013/781914.
Lema WS, Mahadhy A, Damas M, Munissi JJE, Lyimo TJ. 2022. Characterisation and antimicrobial potential of Actinobacteria isolated from momela Soda lakes, Tanzania. Tanzan J Sci 48: 607-622. DOI: 10.4314/tjs.v48i3.8.
Mahady G. 2005. Medicinal plants for the prevention and treatment of bacterial infections. Curr Pharm Des 11: 2405-2427. DOI: 10.2174/1381612054367481.
Manandhar S, Luitel S, Dahal RK. 2019. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med 34: 130-145. DOI: 10.1155/2019/1895340.
Martin KJ, Rygiewicz PT. 2005. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. Molecules 11: 20-34.
Marwat SK, Fazal-Ur-rehman. 2017. Ricinus communis: Ethnomedicinal uses and pharmacological activities. Pak J Pharm Sci 30: 1815-1827.
Mehta T, Meena M, Nagda A. 2022. Bioactive compounds of Curvularia species as a source of various biological activities and biotechnological applications. Front Microbiol 13: 1-12. DOI: 10.3389/fmicb.2022.1069095.
Mpenda F, Mkangara M. 2022. Antimicrobial activity of n-hexane and ethyl acetate extracts from Candida tropicalis and Phyllosticta capitalensis fungal endophytes. Baghdad J Biochem Appl Biol Sci 3: 109-121. DOI: 10.47419/bjbabs.v3i02.118.
Mwanga ZN, Mvungi EF, Tibuhwa DD. 2019. Antimicrobial activities of endophytic fungi secondary metabolites from Moringa oleifera (Lam). Tanzan J Sci 45: 463-476.
Njeru SN, Obonyo MA, Nyambati SO, Ngari SM. 2015. Antimicrobial and cytotoxicity properties of the crude extracts and fractions of Premna resinosa: Kenyan traditional medicinal plant. BMC Complement Altern Med 15: 1-9. DOI: 10.1186/s12906-015-0811-4.
Nondo RSO, Mbwambo ZH, Kidukuli AW, Innocent EM, Mihale MJ, Erasto P, Moshi MJ. 2011. Larvicidal , antimicrobial and brine shrimp activities of extracts from Cissampelos mucronata and Tephrosia villosa from coast region, Tanzania. BMC Complement Altern Med 14: 1-16. DOI: 10.1186/1472-6882-11-33.
Parthasarathy R, Shanmuganathan R, Pugazhendhi A. 2020. Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line. Anal Biochem 593: 113-130. DOI: 10.1016/j.ab.2019.113530.
Rahmawati I, Rahayu G, Ratnadewi D, Achmadi S. 2021. Effect of medium ph and light on quinidine production in Cinchona calisaya wedd. endophytic fungi. Turk J Pharm Sci 18 (2): 124-132. 10.4274/tjps.galenos.2020.35761.
Rakotoarivelo NH, Rakotoarivony F, Ramarosandratana AV, Jeannoda VH, Kuhlman AR, Randrianasolo A, Bussmann RW. 2015. Medicinal plants used to treat the most frequent diseases encountered in Ambalabe rural community, Eastern Madagascar. J Ethnobiol Ethnomed 11: 1-16. DOI: 10.1186/s13002-015-0050-2.
Raviglione M, Maher D. 2017. Ending infectious diseases in the era of the Sustainable Development Goals. Porto Biomed J 2 (5): 140-142. DOI: 10.1016/j.pbj.2017.08.001.
Shah Z, Gohar UF, Jamshed I, Mushtaq A, Mukhtar H. 2021. Podophyllotoxin: History, recent advances and future prospects. Biomolecules 8: 1-27. DOI: 10.3390/biom11040603.
Sosovele ME, Hosea KM, Lyimo TJ. 2012. In vitro antimicrobial activity of crude extracts from marine streptomyces isolated from mangrove sediments of Tanzania. J Biochem Technol 3: 431-435.
Tibuhwa DD. 2017. Cytotoxicity, antimicrobial and antioxidant activities of Boletus bicolor, a Basidiomycetes mushroom indigenous to Tanzania. Tanzan J Sci 43: 154-166.
van Wyk AS, Prinsloo G. 2018. Medicinal plant harvesting, sustainability and cultivation in South Africa. Biol Conserv 227: 335-342. DOI: 10.1016/j.biocon.2018.09.018.
Yimgang LV, Toghueo RMK, Mbekou IMK, Dize D, Boyom FF. 2022. Crude metabolites from endophytic fungi inhabiting Cameroonian Annona muricata inhibit the causative agents of urinary tract infections. PLoS One 17: 1-25. DOI: 10.1371/journal.pone.0267246.