Effect of chromated copper arsenate on protein, carbohydrate, and chlorophyll content of tropical Eucalyptus and Acacia species

##plugins.themes.bootstrap3.article.main##

NARAYANAPPA NAGARAJA
BETTAIAH MALLAMMA RATHNA KUMARI

Abstract

Abstract. Kumari BMR, Nagaraja N. 2023. Effect of chromated copper arsenate on protein, carbohydrate, and chlorophyll content of tropical Eucalyptus and Acacia species. Asian J Trop Biotechnol 20: 56-61. Contamination of heavy metals could cause morphological, physiological, and biochemical changes in plants. Chromated Copper Arsenate (CCA) is a wood preservative that contains Cr, Cu, and As. Leaching these heavy metals into agricultural fields from moderate to higher levels causes a serious threat to the ecosystem. A pot experiment was conducted to evaluate the effect of various concentrations of CCA (250-2,500 mg kg-1 soil) on the protein, carbohydrate, and chlorophyll content of Eucalyptus and Acacia seedlings using commercially available C-type CCA with a proportion of Cr (CrO3-47.5%), Cu (CuO-18.5%), and As (As2O5- 35%). The quantitative estimation of total carbohydrate, protein, and chlorophyll content in control and treated seedlings was carried out by spectrophotometric methods. Results showed that the high concentrations of CCA significantly (p ?0.05) reduced protein, carbohydrate, and chlorophyll content of Eucalyptus and Acacia seedlings. The lowest amount of total carbohydrates, proteins, and chlorophyll content found in E. citriodora Hook. and E. tereticornis Sm. were 0.97±0.05 and 1.70±0.17 mg g-1, 0.42±0.08 and 0.45 ±0.02 mg g-1 and 0.11±0.04 and 0.07±0.03 mg g-1 at 2,500 mg kg-1 soil CCA respectively. Furthermore, the lowest total carbohydrates, proteins, and chlorophyll content in A. mangium seedlings were 1.91±0.43, 0.52±0.13, and 0.13±0.01 mg g-1 at 2,500 mg kg-1 soil CCA, respectively. The present study advocates that the higher concentrations of CCA affect the biochemical parameters of Eucalyptus and Acacia tree species.

##plugins.themes.bootstrap3.article.details##

References
Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha. 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Intl J Environ Res Public Health 15 (1): 59. DOI: 10.3390/ijerph15010059.
Acemi A, Duman Y, Karakus YY, Kompe YO, Ozen F. 2017. Analysis of plant growth and biochemical parameters in Amsonia orientalis after in vitro salt stress. Hortic Environ Biotechnol 58 (3): 231-239. DOI: 10.1007/s13580-017-0215-0.
Adamse PHJ, Klerx VF, de Jong J. 2017. Cadmium, lead, mercury and arsenic in animal feed and feed materials – trend analysis of monitoring results. Food Addit Contam: Part A 34 (8): 1298-1311. DOI: 10.1080/19440049.2017.1300686.
Adekunle A, Raghavan V, Tartakovsky B. 2019. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor. Biosens Bioelectron 132: 382-390. DOI: 10.1016/j.bios.2019.03.011.
Ahmed T, Noman M, Ijaz M, Ali S, Rizwan M, Ijaz U, Hameed A, Ahmad U, Wang Y, Sun G, Li B. 2021. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture. Ecotoxicol Environ Saf 227: 112888. DOI: 10.1016/j.ecoenv.2021.112888.
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1-15. DOI: 10.1104/pp.24.1.1.
Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. 2019. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174: 714-727. DOI: 10.1016/j.ecoenv.2019.02.068.
Balal RM, Shahid MA, Vincent C, Zotarelli L, Liu G, Mattson NS, Rathinasabapathi B, Martínez-Nicolas JJ, Garcia-Sanchez F. 2017. Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one. Environ Exp Bot 140: 8-18. DOI: 10.1016/j.envexpbot.2017.05.011.
Bashir MA, Wang X, Naveed M, Mustafa A, Ashraf S, Samreen T, Nadeem SM, Jamil M. 2021. Mediated-alleviation of chromium stress and growth improvement of different maize cultivars in tannery polluted soils. Intl J Environ Res Public Health 18: 4461. DOI: 10.3390/ijerph18094461.
Bhat SA, Bashir O, Haq SAU, Amin T, Rafiq, A, Ali M, Americo-Pinheiro JHP, Sher F. 2022. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 303: 134788. DOI: 10.1016/j. chemosphere.2022.134788.
Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6 (9): e04691. DOI: 10.1016/j.heliyon.2020.e04691.
Chen G, Li J, Han H, Du R, Wang X. 2022. Physiological and molecular mechanisms of plant responses to copper stress. Intl J Mol Sci 23: 12950. DOI: 10.3390/ijms232112950.
Christou A, Georgiadou EC, Zissimos AM, Christoforou IC, Christofi C, Neocleous D, Dalias P, Torrado, SOCA, Argyraki A, Fotopoulos V. 2020. Hexavalent chromium leads to differential hormetic or damaging effects in alfalfa (Medicago sativa L.) plants in a concentration-dependent manner by regulating nitro-oxidative and proline metabolism. Environ Pollut 267: 115379. DOI: 10.1016/j.envpol.2020.115379.
Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015: 756120. DOI: 10.1155/2015/756120.
Ertani A, Mietto A, Borin M, Nardi S. 2017. Chromium in agricultural soils and crops: A review. Water Air Soil Pollut 228: 190. DOI: 10.1007/s11270-017-3356-y.
Feigl G, Lehotai N, Molnár Á, Ördög A, Rodríguez-Ruiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z. 2015. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116 (4): 613-625. DOI: 10.1093/aob/mcu246.
Finnegan PM, Chen W. 2012. Arsenic toxicity: The effects on plant metabolism. Front Physiol 3: 182. DOI: 10.3389/fphys.2012.00182.
Gan T, Yin G, Zhao N, Tan X, Wang YA. 2023. Sensitive response index selection for rapid assessment of heavy metals toxicity to the photosynthesis of Chlorella pyrenoidosa based on rapid chlorophyll fluorescence induction kinetics. Toxics 11 (5): 468. DOI: 10.3390/toxics11050468.
Hasanuzzaman A, Nahar K, Anee TI, Fujita M. 2017. Exogenous silicon attenuates cadmium induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8: 1061. DOI: 10.3389/fpls.2017.01061.
Hedge JE, Hofreiter BT, Whistler RL. 1962. Carbohydrate Chemistry Academic Press, New York.
Ismail GSM. 2012. Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34: 1303-1311. DOI: 10.1007/s11738-012-0927-9.
Jha AB, Dubey AK 2004. Arsenic exposure alters activity behaviour of key nitrogen assimilatory enzymes in growing rice plants. Plant Growth Regul 43: 259-268. DOI: 10.1023/B:GROW.0000045995.49365.df.
Kalita J, Pradhan AK, Shandilya ZM, Tanti B. 2018. Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Sci. 25: 235-249. DOI:10.1016/j.rsci.2018.06.007.
Kapoor D, Singh MP, Kaur S, Bhardwaj R, Zheng B, Sharma A. 2019. Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants 8: 260. DOI: 10.3390/plants8080260.
Kumari BMR, Nagaraja N. 2023. Studies on phytoremediation of Chromated Copper Arsenate (CCA) using Acacia plant species (Fabaceae), Intl J Phytoremed 25 (12): 1669-1675. DOI: 10.1080/15226514.2023.2185450.
Kumari BMR. 2022. Effects of copper bioaccumulation on growth and biochemical constituents of the seedlings of Casuarina equisetifolia L. Curr Bot 13: 8-11. DOI: 10.25081/cb.2022.v13.7212.
Kumpiene J, Lagerkvist A, Maurice C. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments: A review. Waste Manag 28: 215-225. DOI: 10.1016/j.wasman.2006.12.01.
Lowry OH, Rosebrough NJ, Faar AL, Randall RJ. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193: 265-275. DOI: 10.1016/S0021-9258(19)52451-6.
Luo J, Qi S, Peng, L, Wang J. 2016. Phytoremediation efficiency of CD by Eucalyptus globules transplanted from polluted and unpolluted sites. Intl J Phytoremed 18 (4): 306-314. DOI: 10.1080/15226514.2015.1094446.
Marastoni L, Tauber P, Pii Y, Valentinuzzi F, Astolfi S, Simoni A, Brunetto G, Cesco S, Mimmo T. 2019. The potential of two different Avena sativa L. cultivars to alleviate Cu toxicity. Ecotoxicol Environ Saf 182: 109430. DOI: 10.1016/j.ecoenv.2019.109430.
Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ Sci 34 (3): 101865. DOI: 10.1016/j.jksus.2022.101865.
Morais S, Fonseca HMAC, Oliveira SMR, Oliveira H, Gupta VK, Sharma B, Pereira ML. 2021. Environmental and health hazards of chromated copper arsenate treated wood: A review. Intl J Environ Res Public Health 18: 5518. DOI: 10.3390/ijerph18115518.
Motesharezadeh B, Etesami H, Bagheri NS, Amirmokri H. 2017. Fertilizer consumption trend in developing countries vs developed countries. Environ Monit Assess 189: 103. DOI: 10.1007/s10661-017-5812-y.
Muhammad I, Shalmani A, Ali M, Yang Q, Ahmad H, Li FB. 2021. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11: 615942. DOI: 10.3389/fpls.2020.615942.
Naila A, Meerdink G, Jayasena V, Sulaiman AZ, Ajit AB, Berta G. 2019. A review on global metal accumulators—mechanism, enhancement, commercial application, and research trend. Environ Sci Pollut Res Intl 26: 26449-26471. DOI: 10.1007/s11356-019-05992-4.
Pant PH, Tripathi AK. 2014. Impact of heavy metals on morphological and biochemical parameters of Sohea robusta plants. Ekologia 33 (2): 116-126. DOI: 10.2478/eko-2014-0012.
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. 2017. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017: 8416763. DOI: 10.1155/2017/8416763.
Rahman Z, Singh VP. 2019. The relative impact of Toxic Heavy Metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess 191 (7): 419. DOI: 10.1007/s10661-019-7528-7.
Rather BA, Masood A, Sehar Z, Majid A, Anjum NA, Khan NA. 2020. Mechanisms and role of nitric oxide in phytotoxicity-mitigation of copper. Front Plant Sci 11: 675. DOI:10.3389/fpls.2020.00675.
Saleem MH, Ali S, Rehman M, Hasanuzzaman M, Rizwan M, Irshad S, Shafiq F, Iqbal M, Alharbi, BM, Alnusaire TS, Quari, SH 2020. Jute: A potential candidate for phytoremediation of metals: A review. Plants 9 (2): 258. DOI: 10.3390/plants9020258.
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Natasha, Murtaza G, Dumat C, Shahid M. 2020. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 259: 127436. DOI: 10.1016/j.chemosphere.2020.127436.
Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yuan H, Yan D. 2020. Chromium bioaccumulation and its impacts on plants: An overview. Plants (Basel) 9: 100. DOI 10.3390/plants9010100.
Singh D, Sharma NL, Singh CK, Sarkar SK, Singh I, Dotaniya ML. 2020. Effect of chromium (VI) toxicity on morpho-physiological characteristics, yield, and yield components of two chickpea (Cicer arietinum L.) varieties. Plos One 15: e0243032. DOI: 10.1371/journal.pone.0243032.
Singh N, Ma LQ, Srivastava M, Rathinasabapathi B. 2006. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170: 274-282. DOI: 10.1016/j.plantsci.2005.08.013.
Sinha S, Saxena R, Singh S. 2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58: 595-604. DOI: 10.1016/j.chemosphere.2004.08.071.
Suman J, Uhlik O, Viktorova J, Macek T. 2018. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 16: 1476. DOI: 10.3389/fpls.2018.01476.
Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM. 2016. Plant driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges and future perspectives. Environ Monit Assess 188: 206. DOI:10.1007/s10661-5211-9.
Tripathi AK, Tripathi S. 1999. Change in some physiological and biochemical characters in Albizia lebbeck as bioindicators of heavy metal toxicity. J Environ Biol 20: 93-98.
Ugwu EI, Agunwamba JC. 2020. A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. Environ Monit Assess 192: 240. DOI: 10.1007/s10661-020-8162-0.
Usman ARA, Lee SS. Awad YM, Lim KL, Yang JE, Ok YS. 2012. Soil pollution assessment and identification of hyper-accumulating plants in Chromated Copper Arsenate (CCA) contaminated sites, Korea, Chemosphere 87: 872-878. DOI: 10.1016/j.chemosphere.2012.01.028.
Wakeel A, Ali I, Upreti S, Azizullah A, Liu B, Khan A.R, et al. 2018. Ethylene mediates dichromate induced inhibition of primary root growth by altering AUXI expression and auxin accumulation in Arabidopsis thaliana. Plant Cell Environ 41: 1453-1467. DOI: 10.1111/pce.13174.
Wiszniewska A, Ko?mi?ska A, Hanus-Fajerska E, Dziurka M, Dziurka K. 2019. Insight into mechanisms of multiple stresses tolerance in a halophyte Aster tripolium subjected to salinity and heavy metal stress. Ecotoxicol Environ Saf 30: 12-22. DOI: 10.1016/j.ecoenv.2019.04.059.
Yan A, Wang Y, Tan SN, Yusof MLM, Gosh S, Chen Z. 2020. Phytoremediation: A promising approach for revegetation of heavy metal polluted land. Front Plant Sci 11: 359. DOI: 10.3389/fpls.2020.00359.
Yang Y, Dou Y, Wang B, Xue Z, Wang Y, An S, et al. 2023. Deciphering factors driving soil microbial life history strategies in restored grasslands. iMeta 2 (1): e-66. DOI: 10.1002/imt2.66.