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Abstract. Hartoni, Siregar VP, Wouthuyzen S, Agus SB. 2021. Object based classification of benthic habitat using Sentinel 2 imagery by 
applying with support vector machine and random forest algorithms in shallow waters of Kepulauan Seribu. Biodiversitas 23: 514-520. 
Benthic habitats have very high complexity and are home to many types of aquatic organisms. Benthic habitats have various functions, 
including habitat for flora and fauna, sediment traps, nursery areas, and foraging areas for aquatic fauna that are susceptible to damage 
due to human activities or natural factors. Therefore, more accurate spatial information is needed. The purpose of this study was to 
examine the ability of object-based classification techniques for mapping shallow waters benthic habitats using Sentinel 2A imagery. 

The two classification algorithms used are support vector machine (SVM) and random forest (RF). The input image layer (IIL) used for 
classification is the natural color band (Band 432). The results showed that the SVM and RF classification algorithms could classify 
eight classes of benthic habitats. The overall accuracy (OA) of the SVM algorithm is 65%, while the RF accuracy is 67%, with kappa 
values of 0.59 and 0.60, respectively. The significant test applied to Sentinel 2 images with SVM and RF algorithms for benthic habitats 
has a Z test value of-0.41. These results indicate that the classification results between the SVM and RF algorithms are not significantly 
different. 
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INTRODUCTION 

The biodiversity of coastal ecosystems such as coral 

reefs, seagrasses, and mangroves is under threat worldwide 

due to the impacts of climate change (Waycott et al. 2011) 

and, anthropogenic pressures from such as overfishing, 

coastal development, and tourism activities (Hughes et al. 

2003). As a part coastal ecosystem, shallow water benthic 

habitats are very highly complex and comprises of diverse 

ecosystem which are used as a place to live for various 

types of marine biota. It is also composed of biotic 
components such as seaweed, seagrass, algae, live coral, 

and non-biotic component such as sand, mud, and coral 

rubble (Zhang et al. 2013). As an addition, shallow waters 

benthic habitats have various functions, included as 

sediment traps, nursery grounds, and foraging for aquatic 

fauna. These benthic habitats are vulnerable to damage due 

to human activities or natural factors and change 

dynamically (Eugenio et al. 2017).  

Benthic habitat mapping using satellite imagery along 

with accuracy assessments have been carried out by several 

researchers (Phinn et al. 2011; Wahidin et al. 2015; Hafizt 

et al. 2017; Siregar et al. 2020). Pixel-based classification 
is the most frequently applied technique in mapping. The 

pixel-based classification method with conventional 

algorithms such as maximum likelihood (MLH) only 

utilizes spectral information in classifying multispectral 

images. The results of pixel-based classification tend to 

produce a salt and pepper effect, where one pixel classed is 

different from the surrounding classes (Duro et al. 2012; 

Pande-Chhetri et al. 2017). This effect is due to the 

complexity of the biophysical environment, which results 

in spectral similarities between land cover classes or 

classification schemes used (Whiteside et al. 2011).  

In the last decade, object-based image analysis (OBIA) 
has been accepted as an effective method for extracting and 

classifying information from high spatial resolution 

satellite images (Blaschke 2010; Roelfsema et al. 2018). 

OBIA involves segmenting images into homogeneous areas 

and object characteristics with a set of features related to 

spectral, spatial, and contextual properties (Dra˘gut et al. 

2014). Machine learning classification algorithms have 

grown rapidly enough to be used to classify spatial data 

from various sources. Support vector machine (SVM) and 

random forest (RF) classification algorithms, including 

machine learning algorithms, have received increasing 

attention (Rodriguez-Galiano et al. 2012; Du et al. 2015) 
and are applied in the OBIA classification because of its 

excellent classification results and processing speed (Zhang 

et al. 2013).  
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So far, Landsat imagery is a medium spatial resolution 

satellite image used in various uses in mapping resources 

both on land and in waters. Landsat is one of the satellites 

with a long history, a spatial resolution of 30 meters, and 

good spectral resolution, and the data is time series and can 

be obtained free of charge. However, in recent years the 

presence of the sentinel2 satellite, which was launched in 

2015 with specifications consisting of 13 bands, a spatial 

resolution of 10 meters includes four multispectral bands 

that can penetrate the water column and have a temporal 
resolution of 10 days. The data can be accessed free of 

charge, is expected to be a source of information, spatial 

data of benthic habitat mapping. Benthic habitat mapping 

research using medium resolution image data with the 

OBIA technique approach with the application of machine 

learning algorithms needs to be done to determine the 

ability of the algorithm to classify benthic habitats. This 

study aims to analyze the ability of object-based 

classification techniques for mapping benthic habitats using 

Sentinel 2 imagery with SVM and RF classification 

algorithms in the shallow waters of the Kepulauan Seribu 
(Seribu Islands), Jakarta, Indonesia. 

MATERIALS AND METHODS 

Study area 

The research was conducted from August to December 

2018, while the field survey was conducted in September 

2018. The location of this research was carried out in 

shallow waters around Pramuka Island, Panggang Island, 

and Karya Island in the Kepulauan Seribu District, Jakarta, 

Indonesia (Figure 1). 

Procedures 

Data and data sources 
The satellite image data used in this study is the 

Sentinel 2A sensor which is downloaded via 

https://scihub.copernicus.eu. This imagery was acquired on 

07 September 2018. Data obtained consist of 13 spectral 

bands in VNIR and SWIR. The bands used have a spatial 

resolution of 10 m that is band 2 (0.458-0.523 µm), band 3 

(0.543-0.578 µm) and band 4 (0.650-0.680 µm). 

The field data collected was the type of shallow waters 

benthic habitat. The observation stations were determined 

using a random sampling method. The benthic habitats type 

was observed by direct visual observation and combined 

with a quadratic transect photo technique (Phinn et al. 

2011; Roelfsema et al. 2013). The quadratic transect also 

makes it easier to determine the dominant component of 
shallow-water benthic habitat. At each point of the 

observation, benthic habitat data were collected by placing 

five transects of 1 m x 1 m in an area of 10 m x 10 m so 

that there were five transects squared. This component of 

the benthic habitat is used as the basis for the formation of 

the benthic habitat classification scheme at the study site. 

Benthic habitat type information obtained from 310 

observation points are used for determining the 

classification scheme, classification process with satellite 

imagery, and for accuracy testing. Each observation station is 

recorded its position using a global positioning system (GPS). 

Classification scheme 

The benthic habitat classification scheme is a structured 

system to classify the benthic habitat types into several 

classes defined based on its ecological characteristics. The 

initial stage to produce the map is to identify these classes 

and describe their attributes. The determination of the 

benthic habitat classes is based on the dominant cover of 

the benthic habitat component obtained from field 

observations using the quadratic transect. The benthic 

habitat components found in each quadratic transect might 

be composed of single benthic habitat composition, 
dominated by one benthic habitat component or a mixture 

of several benthic habitat components. The classification 

scheme refers to the dominant benthic habitat cover 

principle, which modifies the scheme used by Green et al. 

(2000). 

 
 
 

 
 

 
Figure 1. Map of research location in shallow waters around Pramuka Island, Panggang Island, and Karya Island of Seribu Islands, 
Jakarta Bay, Indonesia 
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The classes were determined based on the analysis of 

the percentage cover grouping of the components that make 

up the benthic habitat using cluster analysis 

(Agglomerative Hierarchical clustering, AHC) with a 

dissimilarity of 35%. AHC is a classification method based 

on the value of dissimilarities between objects to be 

grouped. The number of dissimilarities can be adjusted to 

the subject studied based on the nature of the data. This 

analysis produces a dendrogram that shows the grouping so 

that it is possible to obtain several similar classes in which 
the data can be grouped (Ripley 1996). The similarity was 

measured using the Bray-Curtis distance similarity 

coefficient (Clarke 1993). This analysis accommodates the 

desired biological properties and is suitable for ecological 

distance measurements. Shallow waters benthic classes 

with the frequency of presence of less than 3% were 

eliminated (Green et al. 2000). 

Image preprocessing 

The preprocessing stage consists of atmospheric 

correction, image cropping, and masking of land and water 

areas. Atmospheric correction is a process to eliminate 
errors caused by the influence of the atmosphere on the 

image. Atmospheric correction was performed using the 

dark object subtraction method (Chavez 1988) with the 

help of QGIS software. 

Shallow waters benthic habitat mapping and accuracy test 

Mapping of shallow waters benthic habitats using 

OBIA technic is carried out in two stages, namely, image 

segmentation and classification in each segment (Zhang et 

al. 2013; Dra˘gut et al. 2014). The process of image 

segmentation and classification was done using ArcGIS 

Pro software. The natural color composite images (Band 
RGB 432) were used as the input image layer (IIL) in the 

OBIA classification process. The segmentation process 

uses the Mean Shift Segmentation (MSS) algorithm 

(Lourenço et al. 2021). MSS parameters consist of spectral 

detail, spatial detail, and minimum segment size. The 

spectral detail and spatial detail parameters use values of 

20 and 5, respectively, while the minimum segment size as 

the segmentation size parameter has a value of 1. There is 

no standard set of standards in determining the standard 

score of segmentation parameters in object-based 

classification (Wahidin et al. 2015). 

The machine learning classification algorithms used in 
this studied were the support vector machine and random 

forest. The OBIA classification parameters in both 

algorithms used were the attribute features on the mean 

digital number and standard deviation. The final stage of 

the classification process is to determine the accuracy of 

the classification (map) results, which consists of overall 

accuracy (OA), kappa coefficient, Z test statistics referring 

to Congalton and Green (2009). 

RESULTS AND DISCUSSION 

Classification scheme 

The description of the classification scheme is derived 

from the percentage value of the seven benthic components 

based on the Bray-Curtis coefficient dissimilarity of 35% 

using AHC statistical calculations. The dissimilarity of 

35% indicates that each habitat class built has a minimum 

of 65% similarity to the benthic components. Because there 
is no standardization in standard class naming in the 

development of classification schemes, the class naming in 

this study is adjusted to the benthic composition of the 

constituents observed in the field. The dendrogram showed 

as many as 14 benthic habitat classes (Figure 2), that is C1: 

sparse sand seagrass (PLj); C2: sand medium seagrass 

(PLs); C3: coral (K); C4: coral rubble (KPk); C5: coral 

algae (KA); C6: algae rubble (APk); C7: sand rubble 

(PPk); C8: rubble (Pk); C9: dense seagrass sand (LpP); 

C10: sand algae sparse seagrass (PALj); C11: coral sand 

(KP); C12: algae medium seagrass sand (ALsP); C13: 
algae coral (AK); and C14: dense seagrass algae (LpA). 

The application of the classification scheme to satellite 

imagery considers the number of samples at least 3% of the 

total sample. Of the total 14 habitat classes, only eight 

classes, namely PLj, PLs, K, KPk, PPk, Pk, LpP, and PALj 

classes that meet the minimum number, while six classes, 

namely KA, APK, KP, AlsP, AK, and LpA classes are not 

used in the classification process with satellite imagery. 

The similarity value in defining the classification scheme 

does not have a standard provision based on grouping 

analysis. It is caused by conditions and variations of 
different observation locations and is adapted to the 

satellite imagery platform used (Mumby and Edwards 

2002; Wahidin et al. 2015). The 8 classes shallow waters 

benthic habitat classification scheme is applied in the 

mapping (Figure 3). 

The PLj class consists of a benthic sand component 

with sparse seagrass. The PLs class consists of a benthic 

sand component with medium seagrass. Class K consists of 

a benthic component of coral reefs. The KPk class consists 

of a benthic component of coral reefs with rubble. The PPk 

class consists of a benthic sand component with rubble. 

The Pk class consists of a benthic component of rubble. 
The LpP class consists of a benthic component of dense 

seagrass with sand. The PALj class consists of benthic 

sand, algae and sparse seagrass components. 
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Figure 2. Dendogram of habitat class grouping 
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Figure 3. The eight classes shallow waters benthic habitat in Kepulauan Seribu, Jakarta, Indonesia. A. PLj; B. PLs; C. K; D. KPk; E. 

PPk; F. Pk; G. LpP; H. PALj 
 
 
 

Benthic habitat classification 

The results of the classification of shallow-water 

benthic habitats based on the object that was applying 

SVM and RF algorithms provided eight classes of benthic 

habitat as proposed in the classification scheme, were 

presented in Figure 4. 
Visually, the two algorithms provided eight classes of 

benthic habitat, but there are differences in the spatial 

distribution of benthic habitat classes. Classification using 

the SVM algorithm showed that sand rubble (PPk) is 

dominant in the area, followed by sand algae sparse 

seagrass (PALj), and coral rubble (KPk). In the contrary, 

using the RF algorithm, the sand rubble (PPk) seems more 

dominant in the area, followed by coral rubble (KPk) and 

sand sparse seagrass (PLj). The two algorithms showed that 

the sand is very dominant in the research location but is 

mixed with other benthic components and does not showed 
the dominance of one benthic habitat component; this is 

because the shallow-water benthic habitat is a habitat that 

has a complexity, unique ecosystem and rapidly changing 

environmental conditions that affect the types of benthic 

components in shallow waters. 
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Figure 4. Shallow waters benthic habitat classification of the 
Sentinel 2A images using (A) the SVM algorithm and (B) the RF 

algorithm 
 
 

The area of each benthic habitat class can be derived by 

spatial analysis. The total area of eight benthic habitat 

classes classified using the SVM and RF algorithms is 

presented in Table 1. 

The area classified in eight benthic habitat classes 
showed that the sand rubble (PPk) is the highest area in 

both algorithms dominated the shallow water area with an 

area of 95.11 ha and 88.18 ha, respectively. In contrast, the 

benthic habitat class, which has the lowest area, namely 

rubble (Pk), has an area of 28.12 ha and 13.93 ha, 

respectively. The difference in the area shows the 

implications of the application of the two classification 

methods used. The difference in the area can be caused by 

overlaps between classes of classified benthic habitats and 

errors in segment features that are not classified correctly; 

this depends on the selection of the classification method 
used. According to Green et al. (2000), differences in 

mapping classification results from several studies are 

caused by differences in classification methods, number of 

field observation points, number of benthic habitat classes, 

and images used. Errors in classifying will affect the area 

in each class resulting in low accuracy. 

Table 1 also showed that the distribution of the seagrass 

ecosystem is dominated by medium seagrass and sparse 

seagrasses, in line with the coral reef ecosystem, which is 

dominated by coral rubble in the study area; This indicates 

that the ecosystem is experiencing disturbances. According 

to field observations, seagrass and coral reefs are under 

pressure due to community activities in densely populated 

land areas that produce household waste around shallow 

waters, and the impact of coastal development and tourism 

activities significantly affects the distribution and condition 

of coral reefs and seagrass. In addition, the research area is 

directly dealing with open waters whose environmental 

changes are very dynamic. 

Test accuracy 

The accuracy test of the SVM and RF classification 
algorithms produces overall accuracy (OA) values of 

65.00% and 67.00%, respectively, and kappa values of 0.59 

and 0.60, respectively (Table 2).  

The RF algorithm has higher accuracy than the SVM 

algorithm. The number of classes influences the difference 

in accuracy results; the higher the number of classes, the 

lower the accuracy percentage. The study of Andrefouet et 

al. (2003) using Landsat and IKONOS images applying 

several classes, showed the result of different OA which 

decreases with the increasing of the number of classes 

used, that is 77% (4-5 classes), 71% (7-8 classes), 56% (9-
11 classes), and 53% (>13 classes). Mastu et al. (2018), 

classified the benthic habitat using Sentinel-2 imagery and 

the SVM algorithm, which has an OA of 60.4% in 12 

classes and 64.1% in 9 classes. Meanwhile, Wicaksono et 

al. (2019) in his research, using WorldView-2 imageries, 

informed that the OA of RF was 94.17% (4 classes) and 

88.54% (14 classes). Wahidin et al. (2015), using Landsat 8 

OLI images with support vector machine (SVM), random 

tree (RT), bayyesian, k-nearest neighbor (KNN) and 

decision tree (DT) shows that the algorithm SVM has a 

better ability than other algorithms with an overall accuracy 
rate of 73% with seven classes. Nababan et al. (2021), 

using drone imagery and applying the SVM algorithm, 

resulted in an overall accuracy of 77.4 % in 12 classes and 

81.1% in 9 classes. 
 
 
Table 1. Area of benthic habitat class at the study site 
 

Class 
Class 

code 

Habitat thematic class 

area (Ha) 

SVM 

Algorithm 

RF 

Algorithm 

Sand sparse seagrass PLj  32.48 68.99 

Sand medium seagrass PLs  54.63 59.94 
Coral K  28.83 23.76 
Coral rubble KPk 56.67 75.44 
Sand rubble PPk  95.11 88.18 
Rubble Pk 28.12 13.93 
Dense seagrass sand LpP  39.19 32.41 
Sand algae sparse seagrass PALj  53.96 26.39 
Total 389.03 389.04 

 
 
Table 2. Overall accuracy(%), kappa test, and Z test for benthic 
habitat classification using SVM and RF algorithms. 
 

Test 
Algorithms 

SVM RF 

Overall accuracy (%) 65.00 67.00 
Kappa 0.59 0.60 
Z test -0.41 
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The Z test is used to determine whether two or more 

image classifications differ significantly or not (Congalton 

and Green 2009). Comparison tests of the different 

classification is carried out to determine the difference in 

perform of each treatment. Overall, the significant test 

applied to Sentinel 2 images with SVM and RF algorithms 

for benthic habitats classification has a Z test value of-0.41. 

These results indicate that the classification results between 

the SVM and RF algorithms are not significantly different. 

According to Congalton and Green (2009), the Z test value 
between-1.96 to 1.96 is an accuracy category in a normal 

distribution. According to Sesnie et al. (2010), Dalponte et 

al. (2013), and Ghosh et al. (2014), the ability of the RF 

and SVM classification algorithms are equally reliable, 

with the results of the RF classification being slightly better 

for high-dimensional data input such as hyperspectral images. 

The results of mapping benthic habitats are influenced 

by several factors, namely resolution, number of classes, an 

algorithm used, and data collection errors in the field and 

aquatic environmental conditions. Errors in data collection 

were related to technicalities in the field, namely errors in 
taking the number of samples, sampling techniques (size 

transect quadrat), and errors in the presentation of benthic 

habitat cover. Errors in the classification process will affect 

the area; this can result in low accuracy. The scale 

segmentation is determined by the resolution of the image 

used, the level of heterogeneity or complexity of shallow-

water benthic habitats, and the study site area. These 

factors can cause differences in the number, shape of 

polygons, and the area of each habitat class, thus affecting 

the mapping of the distribution of benthic habitats. 

The condition of the aquatic environment, namely the 
optical properties of seawater and the turbidity of the 

waters, can affect the results of satellite imagery. In clear 

waters, energy is absorbed more optimally, so it will be 

seen into the waters. Hochberg and Atkinson (2003) stated 

that low accuracy in benthic habitat mapping could be 

influenced by various things, namely the type of sensor, 

image resolution, and aquatic environmental conditions 

such as depth, water quality, and sea surface conditions. 

Absorption and scattering are essential factors in describing 

the value of attenuation in the waters. Waters characteristics 

affect the absorption and scattering process of the light energy 

entering the water column (Saulquin et al. 2013). 
In conclusion, the classification of benthic habitats 

using Sentinel 2A images applying the SVM and RF 

classification algorithms can classify eight benthic habitats. 

The classification of benthic habitats with both 

classification algorithms, the accuracy of the SVM 

algorithm and the RF classification algorithm produces OA 

values of 65.00% and 67.00%, respectively, and kappa 

values of 0.59 and 0.60, respectively. Of the two 

classification algorithms used in the classification of 

benthic habitats in this study, the accuracy of the RF 

algorithm is higher than the SVM algorithm. The 
significant test applied to Sentinel 2 images with SVM and 

RF algorithms for benthic habitats has a Z test value of-

0.41. These results indicate that the classification results 

between the SVM and RF algorithms are not significantly 

different. 
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