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Abstract. Setyawan AD, Supriatna J, Nisyawati, Sutarno, Sugiyarto, Nursamsi I. 2018. Predicting impacts of future climate change on 
the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia. Biodiversitas 19: 1960-1977. The 
current global climate is moving towards dangerous and unprecedented conditions that have been seen as a potentially devastating threat 
to the environment and all living things.  Selaginella is a fern-allies that needs water as a medium for fertilization, hence its distribution 
is presumed to be affected by climate change. In Southeast Asia (SEA), there are two widely distributed selaginellas, namely Selaginella 
ciliaris and S. plana. S. ciliaris is a small herb (up to 4 cm), annual, abundant during the rainy season, and found in the middle-high 
plains, whereas S. plana is a stout large herb (up to 80 cm), perennial, and mainly found in the lowlands. The purpose of this study was 
to determine the potential niche distribution of S. ciliaris and S. plana under current climatic conditions, and to predict its future 
distribution under the impacts of climate change. We used Maxent software along with bioclimatic, edaphic, and UV radiation variables 
to model the potential niche distribution of those two selaginellas under current and future predictions climate conditions. We generated 
future predictions under four detailed bioclimatic scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) over three times intervals 
(2030, 2050, 2080). The results showed that future climatic conditions in the SEA had been predicted to significantly disrupt the 
distribution of suitable habitat of S. ciliaris and S. plana, and alter their geographic distribution patterns. Although some areas were 
predicted to become suitable habitat in the early period of future climate change, the overall projections show adverse effects of future 
climate conditions on the suitable habitat distribution of S. ciliaris and S. plana, as estimated losses of suitable habitat will be higher 
than the gains. 
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INTRODUCTION 

Global climate is currently moving toward dangerous 
and unprecedented condition which has been viewed as a 
potentially devastating threat to the environment and all life 
within it (Beckage et al. 2008; Fitzpatrick et al. 2008; 
Hasanuzzaman et al. 2013). The Intergovernmental Panel 
on Climate Change (IPCC) in the Fifth Assessment Report 
(AR5) developed predictive scenarios on the future of 
global climate condition. In this report, IPCC projecting a 
further increase in global mean surface temperature by 2.6-
4.8°C above pre-industrial levels, spatial and temporal 
changes in precipitation patterns, and increased incidence 
of floods and droughts in the year 2100 (IPCC 2014). 
These predictions presenting scientists with serious 
challenges in forecasting the impact of future climate 
projection on the sustainability of biodiversity (Fitzpatrick 
and Hargrove 2009). In the last decade, many scientists 
have been trying to measure the ecological impact of an 
ongoing climate change combined with continuous 
destructive human activities and to predict the response of 
biodiversity to different drivers of change (e.g. Dillon et al. 

2010; Gilman et al. 2010; Pereira et al. 2010; Salamin et al. 
2010; Beaumont et al. 2011; Dawson et al. 2011; 
McMahon et al. 2011; Alice et al. 2012; Bellard et al. 2012; 
Belgacem and Louhaichi 2013). In order to gain a deeper 
understanding of biodiversity responses to climate change, 
it may be more convenient to conduct the assessment on 
the regional scale, which is spatially heterogeneous, rather 
than assessing on the global scale (Walther et al. 2002; 
Bonebrake and Mastrandrea 2010). Currently, among all of 
the five global climate domains (i.e., tropical, subtropical, 
temperate, boreal, and polar regions), the tropical biome 
has been expected to become more vulnerable to the impact 
of climate change.
 

Myers (1988, 1990, 2000) initially defined 14 hotspots 
in the tropical biome and four in Mediterranean 
bioclimates. One of the defined hotspots of diversity and 
endemicity in tropical biome is Southeast Asia (SEA) 
(Sodhi et al. 2010). Climatically, Southeast Asia is 
monsoonal region with summer-dominant rainfall and a 
large-scale seasonal reversal of the wind regimes (Loo et 
al. 2015). However, SEA region has been experiencing a 
change on its climate condition. Average annual surface 
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temperature has increased by 0.5-1.1ºC during the period 
1901-2005 (NIC 2009). Furthermore, climate model 
projection shows the average temperature will increase by 
approximately 1ºC until 2030 and will keep increasing 
through the rest of the 21st century (IPCC 2014). Although 
there is no clear projection in precipitation patterns in this 
region, climate model suggests that net precipitation rates 
will increase across the region, but there will likely be a 
local decrease of precipitation rates in some areas that will 
vary geographically and temporally (NIC 2009). An 
acceleration of annual rainfall, a significant increase of 
mean temperature, and extreme climate events such as 
floods, drought, and cyclones are several projected 
negative impacts of climate change in SEA region (IPCC 
2014; Loo et al. 2015). The increase of mean temperature 
also has several impacts on the future climate condition, 
such as frequent changes and shifts in monsoon 
precipitation up to 70% below normal level and the delayed 
of monsoon by up to 15 days (Schewe and Levermann 
2012). Along with the human-induced environmental 
degradation, climate change is believed to negatively 
affects the current plant diversity patterns (Belgacem et al. 
2008). These threats are expected to lead to low emergence 
of annual species, change the life cycle of plants, changes 
in phenology and the timing of reproduction and finally 
reduced plants biodiversity (Thuiller et al. 2008; Belgacem 
et al. 2008; Hilbish et al. 2010; Hill and Preston 2015).
 

A number of plants species have been reported affected 
by recent climatic change (e.g. Bertin 2008; Skelly et al. 
2010; Chen et al 2011; Agnihorti 2017; Evans and Brown 
2017). However, this substantial development of assessing 
the ecological impact of climate change have been 
conducted almost exclusively on vascular plants, while 
only a few studies addressed the presumptive impact of 
future climate on cryptogams (Cornelissen 2007; Ellis et al. 
2007). Autotrophic non-vascular cryptogams, such as 
spike-mosses, are also expected to be one of the earliest 
groups to be highly affected by the climate change 
(Cornelissen 2007; Bellard et al. 2012). Examining the 
impact of future climate condition on this group of species, 
which has been previously neglected, may be beneficial in 
acquiring a wider understanding of potential future risks of 
climate change, and serves as a crucial step in the 
development of effective management and conservation of 
biodiversity.  

Selaginella Pal. Beauv. is the single remaining genus of 
vascular plants from the order Selaginellales (family 
Selaginellaceae), which can be found widely distributed in 
SEA region. This genus contains about 750 known species 
with a wide range of characters (Christenhusz and Byng 
2016) and about 200 species found in SEA (Camus 1997; 
Hassler dan Swale 2002). Selaginella can be found in both 
very dry and very humid environments; and in open and 
shaded habitats (Setyawan et al. 2017). Therefore, the high 
humidity and tropical-hot characteristics of SEA's climate 
condition are highly suitable for the wide distribution of 
Selaginella. Selaginella ciliaris (Ritz.) Spring. and 
Selaginella plana (Desv. ex Poir.) Hieron are two examples 
of widespread selaginellas in the SEA region. The 
capability of these species to spread widely in the vast 

variety of microclimatic, physiographic, topographic, and 
edaphic conditions of SEA region, represent their presumed 
broad eco-physiological niche. Therefore, it is important to 
predict how the projected future climate affects the survival 
and the geographical distribution of these species.
 

Selaginella is relicts from ancient times and has 
survived almost unchanged in appearance for hundreds of 
millions of years (Banks 2009). To avoid extinction, 
Selaginella, like any other plant groups, may develop 
micro-evolutionary mechanisms as a response to climate 
change condition by reducing photosynthetic rates, growth 
rates, mineral absorption, tissue regeneration, and by 
increasing concentrations of secondary metabolites 
(Jochum et al. 2007; Wiens et al. 2009), or more likely, 
responding by shifting distribution to follow changing 
environments (e.g., Philips et al. 2006; Wiens et al. 2009; 
Minteer and Collins 2010; Chen et al. 2011; Morueta-
Holme et al. 2015). Recently, attention has been shifted 
toward understanding more about the redistribution 
mechanism of species to cope with the change in climate 
condition. To project how the climate change affects the 
species distribution, Ecological Niche Modeling (ENM), 
which frequently called as  Species Distribution Models 
(SDM) has become especially popular (Lawler et al. 2009; 
Merow et al. 2013; Fourcade et al. 2014). Peterson and 
Soberon (2012) have cautiously overviewed the conceptual 
considerations in terminology related to ENM and SDM. 
The authors found that there are a variety of differences in 
biogeographic and ecological basis of the two terms 
wherein each term has its own conceptual framework and 
its basis application. Following this overview, subsequent 
to reviewing our conceptual framework, we deliberately 
use the tern ENM in this study. Such models were built by 
using information on the environmental features that define 
the current ecological niche of species (Wiens et al. 2009). 
One of the most developed approaches of ENM/SDM is 
through the use of Maximum Entropy or Maxent 
algorithms (Belgacem and Louhaichi 2013). Maxent is a 
general-purpose machine learning method with a simple 
and precise mathematical formulation, for characterizing 
probability distribution from presence-only data, as well as 
a set of environmental predictors across a user-defined 
landscape (Phillips et al. 2006; Merow et al. 2013). Maxent 
has the ability to utilize different climatic scenarios to 
estimate the extent of occurrence of species (Beaumont et 
al. 2015). Therefore, allowing the evaluation of the impact 
of climate changes on geographical distribution of species' 
suitable habitat (e.g. Rondini et al. 2006; Botkin et al. 
2007; Randin et al. 2008; Engler and Guisan 2009; 
Garavito 2015).
 

Here in this study, by utilized Maxent software along 
with bioclimatic, edaphic, and UV radiation variables, we 
tried to model the potential geographic distribution of S. 
ciliaris and S. plana's suitable habitat under present climate 
condition, and predict the impacts of projected climate 
change on their potential distribution. We generate future 
predictions under four detailed bioclimatic scenarios (i.e., 
RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) over three-time 
intervals (2030, 2050, 2080). Quantifying the potential 
impacts of various climatic scenarios offers opportunities 
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to develop understanding the plant response to climate 
change and develop mitigation strategies under all 
projected scenarios of climate change to effectively 
conserve biodiversity.
 

MATERIALS AND METHODS 

Study area 
The study was conducted in an attempt to predict the 

impacts of future climate change on the distribution of 
Selaginella ciliaris and Selaginella plana in Southeast Asia 
(SEA). SEA is a sub-region of Asia, consist of countries 
that are geographically located in south of China, east of 
India, west of New Guinea and north of Australia (Kastle 
2013). This region consists of eleven political countries 
that can be categorized into Mainland SEA (i.e., Cambodia, 
Laos, Myanmar/Burma, Peninsular Malaysia, Thailand, 
and Vietnam) and Maritime SEA (i.e., Indonesia, 
Philippines, Malaysian Borneo, Brunei, Singapore, and 
East Timor) (United Nations 2012). The geographic scope 
of this study includes the region of approximately 23.5 °N 
to 10 °S latitude and 97 °E to 141 °E longitude (Figure 1), 
covers approximately 4,687,481 km2 of lands. The highest 
peak of Southeast Asia is Mount Hkakabo at roughly 5,881 
m asl. (meters above sea level), situated in Northern 
Myanmar (Burma) and on the border with China and Tibet 
(Leinbach and Frederick 2015). The wide areas and vast 
altitudinal range of SEA create a wide variation in 
physiographic, topographic, edaphic, and climatic 
conditions resulting in rich biodiversity in this region.
 

The climate condition in Southeast Asia is mainly 
humid and tropical-hot all year round with high degree of 
rainfall variability and its climate generally can be 
characterized as monsoonal (i.e., marked by wet and dry 
periods) (Leinbach and Frederick 2015), hence, SEA 
region has only two seasons (i.e. wet and dry season). The 
only areas that feature a subtropical climate are in Northern 
Vietnam and the Myanmar Himalayas, featuring a cold 
winter with snow. These areas are in high altitudes which 
lead to milder temperatures and drier landscape (NIC 
2009). 

Materials 
Selaginella ciliaris (Retz.) Spring. (Figure 2.A) 

Annual herb, small, creeping, ascending, or sometimes 
fan-shaped, 4-15 cm. Stems recumbent, without significant 
main stem, 4-5 mm wide (incl. leaves). Rhizophores 
present at intervals, mostly near the base, from the lateral 
side of branching stem, ca. 0.3 mm in diam. Leaves 
dimorphic, composed in 4 lanes (2 lateral, 2 median), vein 
single; lateral leaves ovate-lanceolate, more or less 
symmetrical, 1.5-2 mm long, 0.6-1 mm wide, base 
subcordate or rounded, apex acute or acuminate, margin 
ciliate or serrulate, single vein reaching the apex, keeled, 
pointing outwards; median leaves ovate to falcate, 
asymmetrical, 2-2.5 mm long, 0.6-1.5 mm wide, base 
rounded, apex acute, cuspidate or attenuate, margin 
serrulate but laciniate at basal part, pointing upwards, 
minutely toothed, ciliate, midrib prominent, single vein 

reaching or nearly reaching the apex; axillary leaves 
lanceolate to ovate, bisymmetrically, 1.8-2.5 mm long, 1-
1.5 mm wide, single vein reaching or nearly reaching the 
apex, base subcordate to rounded, ciliate, apex acute, 
margin toothed, laciniate at basal and serrulate at apical. 
Strobilus terminal, solitary or twin, complanate, flattened, 
up to ca. 1.5-2 cm long (Setyawan et al. 2013). 

Habitat: Steep cliff, banks of irrigation water, ditches, 
small tributaries, and waterfalls, cliff edge of road, only 
abundant in the rainy season (Setyawan et al. 2013).  

Distribution: Java, Sulawesi, Maluku (e.g. Ternate), 
Myanmar, Thailand, Vietnam, Philippines, New Guinea, 
Solomons, Northern Australia, Marianas, Palau, Micronesia, 
India, Sri Lanka, Southern China (Guangdong), Taiwan, 
(Hassler and Swale 2002). 

Selaginella plana (Desv. ex Poir.) Hieron. (Figure 2.B) 
 Perennial herb, stout. Stems sub-erect with 

stoloniferous rhizome, without branches on the lower part, 
ascending from subterranean trailing base, up to 80-100 cm 
long, 3-10 cm wide (incl. leaves); rhizome (subterranean 
stems) shallowly radiating. Rhizophores sometimes at the 
branching stem, from the dorsal side of stem at the branch 
site, ca. 1-1.5 mm in diam. Leaves on the lower part and 
main stem monomorphic, well spaced, upper part slightly 
spreading, appressed, 1.5-3 mm long, 1-2 mm wide, ovate, 
apex acute or acuminate, but rounded tip, asymmetrical, 
margin translucent, entire. Leaves on the branches 
dimorphic, arranged in 4 lanes (2 dorsal, 2 ventral), loosely 
arranged at lower stem, closely arranged at branches; 
lateral leaves ovate to oblong, asymmetrical, 2-4.5 mm 
long, 2-3 mm wide, apex acute to acuminate, rounded tip, 
sessile, vein single, obscure, not reaching the apex, base 
truncate and rounded, upper base with spur-like lobe which 
overlaps the stem, margin entire, transparent; median 
leaves ovate to oblong, asymmetrical, 1.5-3 mm long, 1-2 
mm wide, apex acuminate to acute, rounded tip, sessile, 
vein single, obscure not reaching the apex, base rounded 
and truncate, margin entire, transparent; axillary leaves 
ovate, asymmetrical, 2.5-3.5 mm long, 1.5-2.5 mm wide, 
apex acute, minutely ciliate, base rounded, margin entire. 
Strobilus terminal, solitary, tetragonal, up to more than 3 
cm long (Setyawan et al. 2013). 

Habitat: Steep cliffs above small irrigation channel, 
tributary, and waterfall, remaining abundant in the dry 
season (Setyawan et al. 2013).  

Distribution: Sumatra, Java, Bali, Flores, Sumbawa, 
Solor, Timor, Sulawesi, Maluku (Ambon, Banda, Buru, 
Ceram, Kei, Ternate), Malay Peninsula (Hassler and Swale 
2002). 

Procedures 
The occurrence data of  Selaginella ciliaris and Selaginella 
plana 

General information relating to the occurrence of S. 
ciliaris and S. plana across its whole range in SEA region 
was obtained from several literatures (Spring 1843; Mishra 
et al. 2001; Rachata and Boonkerd 2001; Beukema and
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Figure 1. A. Predicted distribution of potential habitat for Selaginella ciliaris and Selaginella plana under current climate condition. B. 
Core distributional sifts under different climate scenarios in the year 2080. Black dot indicates the geometric center of suitable area 
under current climate condition. Colored dots indicate the new geometric centers. The arrows depicting magnitude and direction of 
predicted change (Basemap source: Google Physical Maps 2014) 
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Figure 2. Selaginella species used in research. A. Selaginella ciliaris, B. Selaginella  plana 
 
 
  
 
Noordwijk 2004; Ali et al. 2006; Setyawan et al. 2015a,b,c; 
Setyawan and Sugiyarto 2015), as well as Global 
Biodiversity Information Facility (http://www.gbif.org). 
Authors collected the occurrence data for S. ciliaris and S. 
plana from two main sources, i.e., field survey and GBIF 
database. Field survey aiming to collect the locality data for 
both species was conducted in all province across Java 
island between July 2007 and January 2014. The island of 
Java was chosen because of its diverse habitat and easy 
access; as well as both species are distributed widely and 
evenly throughout Java. All specimens founded were 
identified using several references on Selaginella of the 
Malay Archipelago and adjacent regions (Alston 1934, 
1935a,b, 1937, 1940; Wong 1982, 2010; Tsai and Shieh 
1994; Li and Tan 2005; Chang et al. 2012; Zhang et al. 
2013) to ensure the high-confidence level of species 
identification.  

During the occurrence data collection, we tried to cover 
as wide area as possible while attempted to cover the 
possible climatic variability of Java island as an attempt to 
minimize bias in sampling intensity (Elith et al. 2006; 
Yackulic et al. 2013). Using Garmin eTrax GPS series, we 
collected 379 occurrence points of S. ciliaris and 384 
occurrence points of S. plana which were found distributed 
in Java island. We conducted none of error-correction 
method for the data as we ensuring the level of telemetry 
error on modern GPS (normally between 0.01 km and 0.05 
km), which is smaller than the resolution of predictor 
variables, has a little effect on the accuracy of models 
(Montgomery et al. 2011). Global Biodiversity Information 
Facility (GBIF 2016) database, which provides freely 
accessible occurrence points in its website (http: 
//www.gbif.org), was the second source of locality points 
for both species. All of the occurrence record acquired 
from GBIF were carefully verified and errors that may 
occur were corrected using Google Earth software (Google 
Earth Pro 2017). Biogeomancer Workbench (http: 
//www.biogeomancer.org) was used as a tool to geo-

reference data record which lacks latitudinal and 
longitudinal value, guided by locality descriptions on each 
datum (Guralnick et al. 2006), and then data record that 
does not have specific locality description and cannot be 
geo-referenced were removed. The remaining 369 locality 
points of S. ciliaris and 214 points of S. plana were 
compiled with the occurrence points collected from the 
field survey. 

The increasing number of regional to continent-wide 
ENM/SDM study was mainly induced by the availability of 
biodiversity and environmental datasets globally (Hijmans 
et al. 2005; Kozak et al. 2008). Nevertheless, a strong 
geographic bias often contained in such datasets derived 
from opportunistic observation and/or collection of records 
(Stolar and Nielsen 2015). Sampling bias correction is 
highly important and strongly advised to be conducted to 
minimize the strong influence of sampling bias on 
modeling prediction ability and later interpretation 
(Kramer-Schadt et al. 2013; Fourcade et al. 2014). 
Fourcade et al. (2014) proposed five option methods of 
sampling bias correction which carefully designed to 
overcome or minimize the effect of four types of bias that 
might occur when collecting observation. Subsequently, 
after we identified the type of sampling data bias contained 
in the sampling data used for this study, we conducted two 
out of five sampling bias correction methods, i.e., (i) We 
conducted spatial filtering by creating a grid of 2 km x 2 
km cell size and randomly select only one point of 
occurrence per grid cell. Nevertheless, it should be noted 
that the size of this grid is not the representation of 
approximate species' dispersal capabilities, but rather as a 
result of modifying the 10-km radius rule of spatial 
filtering proposed by Kramer-Schadt et al. (2013) and 
Boria et al. (2014). The grid creation and points selection 
were conducted using QuantumGIS software ver. 2.18.14 
(QGIS Development Team 2017). (ii) Bias file was created 
and included it into Maxent modeling process through 
setting options (Dudik et al. 2005; Elith et al. 2010; Phillips 

5 mm 5 cm A B 
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et al. 2017). Bias file is a probability surface represented by 
cell value that reflects the intensity of sampling effort 
across the area of study and provides a gradual weight to 
random background data used for modeling (Fourcade et 
al. 2014). Bias file can be artificially estimated using the 
aggregation of occurrences from closely related species 
(Phillips et al. 2009). Nevertheless, in real modeling 
situation, this information is limited. Therefore, by 
following Elith et al. (2010), we produced a Gaussian 
kernel density map of the occurrence locations, then 
rescaled it from 1 to 20 to be derived as bias file instead of 
using our knowledge to create artificial bias file (Fourcade 
et al. 2014). As the distribution of both species occurs in 
different countries (of different areas), we used the political 
state boundary extracted from Global Administrative Areas 
website (www.gadm.org/), to limit the background areas 
for the models.
 

Current environmental and bioclimatic variables 
Environmental and bioclimatic variables to build the 

models in this study were selected based on the model-
driven selection process. Model-driven selection is a 
selection process that will use all possible predictors and 
choose those with greatest importance in the model to be 
considered as the main factor influencing the distribution of 
species, rather than expert-driven selection where the 
expert priory will choose the predictors expected to directly 
affect the species distribution (Fischer 2011). For this 
study, on the basis of earlier screenings of related variables 
(Soria-auza 2009; Hu et al. 2015; Mod et al. 2016; 
Setyawan et al. 2017; Velazco et al. 2017), we collected 19 
bioclimatic, two edaphic variables, and five environmental 
variables, which are expected to have direct effect on plant 
growth. We collected 19 bioclimatic layers ver 2.0 plus one 
altitude layer from WorldClim Bioclimatic datasets website 
(www.worldclim.org). The bioclimatic datasets were 
generated through interpolation of average monthly climate 
data from about 9,000 to 60,000 weather stations on a 30 
arc-second resolution grid (often referred to as "1 km2" 
resolution) (Fick and Hijmands 2017). We collected Global 
UVB radiation layers (UVB1, UVB2, UVB3, UVB4) from 
the glUV database (http: //www.ufz.de/gluv/) (Beckmann 
et al. 2014). Additionally, we collected global Soil pH 
(SpH) and soil organic carbon (SOC) datasets from the 
International Center for Tropical Agriculture 
(https://dataverse.harvard.edu). All of these layers were 
processed through several steps including resampling data, 
image cutting, and type file converting by using Qgis 
Software Ver. 2.18.14 (QGIS 2017). Variables that 
considered related to the occurrence of species, i.e., land 
use/land cover changes, human disturbances, and species 
dispersal or biotic interaction changes were not included as 
the availability of these data were limited. 

Bioclimatic layers are highly correlated with each other, 
and although including all of the bioclimatic layers into 
modeling process will not affect the predictive quality of 
model greatly (Elith et al. 2011), it does, nonetheless, will 
significantly limit any inference of the contribution of any 
correlated variables since Maxent often excludes all other 
highly correlated variables from being incorporated (Van 

Gils et al. 2012, 2014). Therefore, we decided to remove 
highly correlated variables to minimize the effect of 
autocorrelation of climatic variables. SDM toolbox Ver. 2.0 
(Brown 2014) in ArcGIS ver. 10.3 was used to perform the 
autocorrelation calculation and then we omitted the 
bioclimatic variables yielding correlation values above 0.95 
(Spearman’s rho coefficient) in the pairwise cross-
correlation matrix of each dataset (intra-dataset 
correlations) (Bedia et al. 2013). The remaining six 
bioclimatic variables (i.e., bio_1, bio_2, bio_3, bio_4, 
bio_12, and bio_19), two edaphic variables (Soil pH and 
Soil Organic Carbon), plus five environmental variables 
(i.e., altitude, UVB1, UVB2, UVB3, and UVB4) were then 
compiled to be used as predictor variables in Maxent 
(Table 1).  

Future climate scenarios 
Future climate scenarios used to predict the impact of 

future climate change on the redistribution of S. ciliaris and 
S. plana's suitable habitat, were acquired from CGIAR 
Research Program on Climate Change, Agriculture, and 
Food Security website (www.ccafs-climate.org). For this 
study, the HadGEM2-CC (Hadley Global Environment 
Model-2 Carbon Cycle) global circulation model, which 
was developed by the Hadley Center, United Kingdom was 
selected to build the models (Collins et al. 2011). 
HadGEM2-CC model has been used to perform all the 
CMIP5 (Coupled Model Inter-comparison Project Phase 5) 
centennial experiments including ensembles of simulations 
of the RCPs (Shrestha and Bawa 2014). We selected four 
future greenhouse gas (GHG) trajectories, which were 
represented by Representative Carbon Pathways (RCP), 
namely RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 for three 
different periods of time (2030, 2050, and 2080). RCP 2.6, 
the most optimistic projection, assumes that global GHG 
will increase slowly to reach its peak at 3.1 W/m2 in 
between 2010-2020, with the emissions declining 
substantially thereafter to 2.6 W/m2 by the year 2100 (van 
Vuuren et al. 2007; Moss et al. 2010). Emissions levelin 
RCP 4.5 is assumed to be stabilized at 4.5 W/m2 by the 
year 2100 due to the variety of technology and strategies 
which predicted will be implemented to reduce GHG 
emissions level (Clarke et al. 2007). Likewise, the 
emissions level in RCP 6.0 is projected to reach its peak   

 
Table 1. Environmental parameters used to build the models 
 
Code Name Unit 
Alt Altitude m asl 
bio_1 Annual Mean Temperature °C×10 
bio_2 Mean Diurnal Range °C×10 
bio_3 Ishotermality ×100 
bio_4 Temperature Seasonality ×100 
bio_12 Annual Precipitation mm 
bio_19 Precipitation of Coldest Quarter mm 
soil_carbon Soil Organic Carbon  
soil_ph Soil pH  
UVB1 Annual Mean UVB J m-2 day-1 
UVB2 UVB Seasonality J m-2 day-1 
UVB3 Mean UVB of Lightest Month J m-2 day-1 
UVB4 Mean UVB of Lowest Month J m-2 day-1 
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around 2080 and stabilizes in 2100 at 6.0 W/m2. In RCP 
8.5, emissions levelcontinue to increase throughout the 21st 
century, reaching around 8.5 W/m2 as the highest level by 
the end of the century (Riahi et al. 2011). As the 
availability of future projection of environmental variables 
is currently limited, the six environmental variables (Soil 
pH, Soil Organic Carbon, UVB1, UVB2, UVB3, and 
UVB4) remained unchanged for the following ENM 
analysis under future climate projection. Furthermore, the 
same altitude layer was used since this variable is a static 
variable that does not change with time.
  

Global Climate Models (GCMs) have become the 
fundamental resource of information for constructing future 
climate scenarios and for developing impact assessments of 
climate change from local to global scale. Nonetheless, 
these climate models exhibit systematic error (biases) due 
to the simplified physics and thermodynamic processes, 
limited spatial resolution, and numerical schemes or 
incomplete knowledge of climate system processes 
(Ramirez-Villegas et al. 2013). Consequently, we 
implemented the bias correction data provided by CGIAR-
CCAFS under three different calibration approaches : (i) 
Bias Correction, this approach revise the projected raw 
GCM output using the differences in the mean and 
variability between observations and GCM, in a reference 
period (Hawkins et al. 2013). (ii) Change Factor (CF): in 
this approach, the raw GCM outputs current values are 
subtracted from the future simulated values, resulting in 
"climate anomalies" which are then added to the present 
day observational dataset (Tabor and Williams 2010). (iii) 
Quantile Mapping (QM), this approach removes the 
systematic bias in the GCM simulations and account the 
biases in all statistical moments, however, like all statistical 
downscaling approaches, it is assumed that biases relative 
to historical observations will be constant in the projection 
period (Thrasher et al. 2012). 
 

Model development 
Developing the model of potential distribution of 

climatically suitable habitat for S. ciliaris and S. plana 
under current climate condition and assess its redistribution 
under the impact of projected future climate change 
scenario was conducted by using MaxEnt software ver. 
3.4.1 (Phillips et al. 2017). Certainly, there is no "silver 
bullets" in correlative ecological niche modeling (Qiao et 
al. 2015), which means that there is no single algorithm 
approach that can provide robust, reliable, and acceptable 
results under all circumstances. Maxent software, however, 
utilized in this study as it has been proved to give the best 
results among other modeling algorithms available on the 
basis of presence-only (PO) data (Philips and Dudik 2008; 
Summers et al. 2012). Further, consideration to utilize 
Maxent in this study was the aim of this study which met 
the capability of Maxent to performs well in estimating the 
effect of climate change on the potential shifting range of 
species (Kou et al. 2011; Johnston et al. 2012; Duan et al. 
2016), whereas more than 1000 published distribution 
modeling study has been conducted by using Maxent 
software since 2005 (Merow et al. 2013; Fourcade et al. 
2014). 
 

ENM/SDM using Maxent software are often confronted 
with a wide variety of modeling options, from choosing 
appropriate input datasets to choosing the right multiple 
settings available in the software package (Merow et al. 
2013). As the aim of this study is beyond simple 
exploratory analysis, we tried to ensure that the modeling 
setting decisions are adjusted to our specific hypothesis, 
study aims, and species-specific considerations and reflect 
our intended a priori assumptions (Peterson et al. 2011; 
Araujo and Peterson 2012; Merow et al. 2013). The 
adjusted parameter values were: maximum iterations which 
were set to 5,000 for each run to allow the model to have 
adequate time for converging. Convergence threshold was 
set to 1 x 10-6. The number of replicated runs was set to ten 
times (the averaged value is the one used as the result) 
using “cross-validate” as the replicated run type. Using 
"cross-validate" means to split the data ten times (10% per 
partition), train the model ten times on 90% of the data, and 
test it each time on the 10% partition alternately. To avoid 
over-fitting and assuming that both selaginellas are 
responded directly to the predictors (vs to correlated 
factors), we decided to "smooth" the model by choosing 
only hinge features to model both S. ciliaris and S. plana. 
Considering that we used a large collection of occurrence 
from diverse regions to be projected to different climate 
condition, we doubled the default "regularization 
multiplier" value to accommodate aforementioned type of 
data and aim of study (Elith et al. 2006; Merrow et al. 
2013; Radosavljevic and Anderson 2013). We used the 
"projection" feature to extrapolate the model into different 
climate projection to predict the impact of projected future 
climate condition to the redistribution of climatically 
suitable habitat for both species (van der Wall et al. 
2009).
 

Core distributional shifts  
We tried to further examine the trend of suitable area 

changes by calculating and comparing the centroids of 
current and future suitable areas. We utilized a python-
based GIS toolkit, SDM tool-box (Brown 2014) to 
summarize the core distributional shifts of the ranges of 
suitable habitat for both species in between two binary 
models (i.e., current and future SDMs). The tool will 
produce the centroids by calculating the average of latitude 
and longitude of binary input pixels, then depict their 
magnitude and direction of change (based on centers of the 
species ranges-the centroids). Assessment of core 
distributional shifts was conducted only on Java island for 
the following reasons: (i). SEA region has very wide areas, 
consists of several big archipelagic countries separated by 
seas, hence it is impractical to conduct core distributional 
shifts assessment in the whole region. (ii). Java island 
closely represents the vast variations in physiographic, 
topographic, edaphic, and climatic conditions of SEA 
region, therefore the results will closely depict the 
projected core shifts in the whole region. Furthermore, we 
used only projected future climate condition in the year 
2080 to represent maximum shifts of the geometric 
distribution center.
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Data analysis 
The main output of Maxent software is predictive map 

which represents the distribution of potential ecology niche 
of species across the study area. The degrees of potential 
suitable are linearly scaled between 0 (lowest) to 1 
(highest) probability (Philips and Dudik 2008). 
Additionally, Maxent software will calculate the variables' 
relative contribution to the model and quantify the degree 
of these variables affect the prediction. We also retrieve the 
alternate estimation of variable importance by running the 
jackknife test. Jackknife test show which variable appears 
to have the most information that is not present in the other 
variables and which variable have the most useful 
information by itself (Phillips et al. 2006). The predictive 
maps, which by default are in ASCII format, were further 
analyzed using QuantumGIS software ver. 2.18.14 (QGIS 
Development Team 2017). To allow us to compare and 
quantify the geographical distribution of predicted suitable 
habitat, we applied the binary calculation, categorized the 
value into two categories (i.e. suitable vs unsuitable) using 
the selected threshold rule. Selecting the threshold rule is 
one of the many sources of bias that should be minimized 
by Maxent user (Phillips and Dudik 2008; Nenzen and 
Araujo 2011; Bean et al. 2012; Syfert et al. 2013). In the 
process of selecting threshold rule, one should avoid 
arbitrariness and should consider the relative importance 
difference between commission and omission error 
(Phillips and Dudik 2008; Nenzen and Araujo 2011; Bean 
et al. 2012). Norris (2014) in his study proposed the 
"minimum training presence" or "fixed cumulative value 1" 
to be the most appropriate threshold rule, considering that 
reducing omission error is more important determinant than 
reducing commission error. However, Liu et al. (2016) 
stated that the threshold rule proposed by Norris (2014) 
may be more convenient for rarer species, but when 
considering a more common species, commission error 
should be weighted more than omission error. Accordingly, 
we selected "maximum training sensitivity plus specificity" 
threshold rule since this rule will produce lower 
commission error. 
 

To evaluate model performance, as used by several 
studies (e.g., Pearson and Dawson 2003; Pearson et al. 
2007; Jiménez-Valverde 2012), Maxent software will 
calculate an area under the receiver operating characteristic 
(ROC) Curve (AUC). AUC value is ranged between 0 
(lowest value) to 1 (highest value), wherein value between 
0-0.5 represents that the model is no better than random 
prediction, value below 0.7 is low, value between 0.7-0.9 is 
good, and value above 0.9 is indicating high discrimination 
or means that the model is far better than random 
prediction. However, studies conducted by Lobo et al. 
(2008); Bahn and McGill (2013); and Aguirre-Gutiérrez et 
al. (2013) proved that AUC value does not provide useful 
information to assess and/or to evaluate the SDM 
performance. Therefore, for this study, we conducted True 
Skill Statistic (TSS) (also known as the Youden index) 
calculation as an additional measurement to evaluate the 
performance of the model (Youden 1950; Allouche et al. 
2006).  

RESULTS AND DISCUSSION 

Contribution of the variables and model evaluation  
Based on our known occurrences of S. ciliaris and S. 

plana combined with climatic, topographic, edaphic, and 
UVB radiation data, we generated geographic distribution 
maps predicting areas wherein both species can live in 
concordance with all the aforementioned variables. Our 
models demonstrated that the variable which provides the 
highest relative contribution to explain the predicted 
geographic distribution of both S. ciliaris and S. plana’s 
suitable habitat in SEA region is similar (Table 2). 
Isothermality (bio_3) was the highest relative contributor to 
the distribution pattern of the models, with a contribution 
of 28.5% and 39.4% for S. ciliaris and S. plana 
respectively. Combined variables of soil organic carbon, 
UVB2, and temperature seasonality (bio_4) explained in 
total of 36.5% of the variation in the distribution pattern of 
S. ciliaris' suitable habitat, whereas the remaining 
variables, each contributed less than 10% to the model. 
Another variable significantly contributed to the model of 
S. plana were temperature seasonality (bio_4), UVB2, and 
soil organic carbon which in total had a relative 
contribution of 36.9%. Others, appeared to had a little 
contribution to this model with only less than 25% 
contribution in total (Table 2).  

Additionally, we retrieved the alternate estimation of 
variable importance through the utilization of jackknife 
test. The results showed that for both S. ciliaris and S. 
plana's model, the environmental factors with the highest 
gain when used in isolation is isothermality (bio_3), which 
therefore appears to have the most information by itself 
(Phillips et al. 2006). These results confirmed to the 
previous result that the same bioclimatic factor has the 
highest relative contribution to the models. Nevertheless, 
the results of jackknife test showed a different finding of 
which factor which will reduce the gain the most when it is 
omitted. Annual precipitation (bio_12) appears to have the 
most information that is not present in the other variables, 
thus, omitting this variable will decrease the fitness of S. 
ciliaris’ model. For S. plana’s model, isothermality (bio_3) 
variable was both the highest gain when used in isolation 
and decrease the gain highest when it is omitted from the 
model, which indicates that bio_3 variable has the most 
useful information which is not present in the other 
variables (Figure 3). 

To assess predictive performance and statistical 
significance of the models, a post-hoc evaluation of 
distribution models is commonly performed (Peterson et al. 
2011). Despite the fundamental problems when using AUC 
(Area Under the Curve) for model evaluation, we retrieved 
the AUC value of 0.946 for S. ciliaris model and AUC 
value of 0.978 for S. plana model to illustrate that the 
predictions in this study perform better than any model 
with a set of random predictors (Lobo et al. 2008; Fourcade 
et al. 2017). Furthermore, we conducted additional 
evaluation of the models using True Skill Statistic, which 
has been proposed as an alternative metric of evaluation 
(e.g., Allouche et al. 2006; Hijmans 2012; Phillips and 
Elith 2010). The TSS value of 0.83 and 0.86 for S. ciliaris 
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and S. plana’s models respectively, give the impression 
that the models built in this study have a good degree of 
agreement and also have a good predictive capacity (Li and 
Guo 2013). Studies had also demonstrated the use of Kappa 
statistic for Maxent validation (e.g. Duan et al. 2014; Ali 
and Hossein 2016; Bagheri et al. 2017), but, regarding the 
use of Kappa value, it is highly correlated to prevalence of 
the locality points and the size of the study area (Lobo et al. 
2008; Fourcade et al. 2017). Therefore, it would generate 
some sort of bias or misunderstanding. Moreover, due to 
the fact that both AUC and Kappa are weighting omission 
and commission errors equally (Allouche et al. 2006; Lobo 
et al. 2008; Jimenez-Valverde 2012, 2014; Fourcade et al. 
2017), Kappa, just like AUC, is more reliable if it is 
applied in PA (Presence-Absence) model. Consequently, in 
case of this study where presence only data were used, we 
assume that the use of TSS is more suitable than Kappa 
statistic.  

Predicted distribution of current potential habitat 
We built the models by using 748 unique locality points 

of S. ciliaris and 598 locality points of S. plana, which 
were the remaining points after the implementation of 
spatial filtering to reduce bias sampling (see method). The 
potential present-day distribution of suitable habitat for 
both species, as derived from Maxent (Phillips and Dudik 
2008; Elith et al. 2011; Phillips et al. 2017), are shown in 
Figure 1. Our models predicted roughly 26% (1,361,050.9 
km2) of the SEA region is suitable for S. ciliaris. In 
Mainland SEA area, the predicted suitable habitat spread 
patchily in southern part of Myanmar, Cambodia, and 
Vietnam, with a wide predicted suitable area in Peninsular 
Malaysia and Singapore. While in Maritime SEA, the 
predicted suitable habitat for S. ciliaris spread widely in all 
of big islands of Indonesia (Sumatra, Java, Sulawesi, 
Borneo, and Papua), and also appears in Lesser Sunda 
islands. Additionally, the predicted suitable habitat also 
appears in most of the Philippines archipelago. Moreover, 
our model predicted there are approximately 18% 
(871,889.51 km2) of S. plana’s suitable habitat in SEA 
region, spread in mainland SEA almost at the same area as 
the suitable habitat for S. ciliaris (i.e. southern of 
Myanmar, Cambodia, Vietnam, and in most area of 
Peninsular Malaysia). In the maritime SEA, the predicted 
suitable areas spread across big islands of Indonesia 
(mostly in the southern part of Sumatra, Borneo, Sulawesi, 
Java, and Papua). Additionally, the predicted suitable 
habitat of S. plana also appears in most of the southern part 
of the Philippines archipelago.
 

Potential future changes in the distribution of suitable 
habitat 

The predicted redistribution of suitable habitat for both 
species as the impact of climate change is illustrated in 
Figure 4. Overall, under all RCP scenarios in three 
different periods of time, the suitable areas were predicted 
to significantly decreased, even though there is also a 
significant increase in areas wherein predicted to become 
suitable for both species as a result of a warming climate 
condition in the future. Under the influence of RCP 2.6 
climate projection (lowest GHG emission) in the year 

2030, Maxent predicted roughly 2.6% gains of the 
currently suitable habitat area for S. ciliaris. Expansions in 
area increased with increasing latitude and elevation, and 
predicted will occur in the western and northern part of 
Sumatra, southern part of Peninsular Malaysia and 
Philippines archipelago, northern and southern part of 
Sulawesi, and southwestern part of Papua. Furthermore, for 
the next four decades, until the end of 2080, the predicted 
losses of suitable habitat area are greater than the gains. 
Maxent predicted a total of 0.6% and 2.1% reduction of 
current suitable area in the year 2050 and 2080 
respectively. The losses were predicted to occur mostly in 
the lower altitude area of southern Vietnam and Sumatra . 
Likewise, the predicted suitable habitat for S. plana, under 
the same RCP 2.6 climate trajectory, will likely to increase 
at about 2.1% in 2030 before continuously losing its 
suitable area to reach a decrease of ca. 2.9% of the current 
suitable area by the end of 2080. The pattern of losses and 
gains of suitable habitat for S. plana is almost the same as 
the pattern of losses and gains of S. ciliaris’ suitable habitat 
(Table 3, Figure 4). 

Under the future climate scenario of RCP 4.5, Maxent 
software also predicted a slight gain in both suitable habitat 
area for S. ciliaris and S. plana at almost the same pattern. 
The areal extent of gains were predicted to appear in 
southern Peninsular Malaysia, northern part of Sumatra, 
and in the eastern part of Papua, which amounted to 0.24 × 
105 km2 (1.7%) and 0.06 × 105 km2 (0.7%) for S. ciliaris 
and S. plana’s suitable habitat, respectively (Table 3, 
Figure 4). Furthermore, the predicted suitable habitat areas 
for S. ciliaris and S. plana in the year 2050 and 2080 were 
predicted to be about 1.6-2.7% less than the currently 
suitable habitat areas (Table 3). The predicted suitable area 
under RCP 6.0 was projected to be more decreased than 
under former RCP trajectory. Under this GHG emission 
trajectory, in all three different time periods (2030, 2050, 
and 2080), the predicted suitable area for S. ciliaris will 
gradually to decline by about 0.3-4.5% of currently suitable 
habitat and about 0.2-11.1% of current S. plana's suitable 
habitat will be lost. 
 
 
Table 2. Percentage of variable contribution to the final model 
 

Variables Description Contribution (%) 
S. ciliaris S. plana 

Alt Altitude 1.5 3.4 
bio_1 Annual Mean 

Temperature  
0.5 0.2 

bio_2 Mean Diurnal Range 7.2 5.8 
bio_3 Ishotermality 28.5 39.4 
bio_4 Temperature 

Seasonality 
10.2 13.3 

bio_12 Annual Precipitation 8.9 8.1 
bio_19 Precipitation of 

Coldest Quarter 
4.3 0.4 

soil_carbon Soil Organic Carbon 15.3 11 
soil_ph Soil pH 6.2 4.8 
UVB1 Annual Mean UVB 0.2 0.3 
UVB2 UVB Seasonality 11 12.6 
UVB3 Mean UVB of 

Lightest Month 
0.5 0.1 

UVB4 Mean UVB of Lowest 
Month 

5.4 0.7 
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Figure 3. Results of jackknife test of relative importance of predictor variables for Selaginella ciliaris and Selaginella plana 
 

 
The biggest reduction of suitable area was predicted to 

happen under RCP 8.5 trajectory. In 2030, there will be a 
significant decrease of approx. 1.2% and 0.4% of suitable 
habitat area for S. ciliaris and S. plana respectively. 
Moreover, approximately 1.6% of S. ciliaris and 2.3% of S. 
plana's suitable habitat area will vanish by the end of 2050. 
For the next three decades, the predicted suitable habitat 
will continue to decrease, and predicted to affect more on 
the sustainability of suitable habitat for S. plana than for S. 

ciliaris By the end of 2080, approx. 14.4% of currently 
suitable habitat for S. plana will be lost, whereas only 
about 6.6% of S. ciliaris' suitable habitat area will vanish 
under the effect of this future climate trajectory. During all 
of the aforementioned periods of time, indeed there are also 
gained areas which were predicted to become suitable 
habitat for both species. However, the predicted losses of 
suitable area are greater than the gains (Table 3).  
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Table 3. Dynamics of changes in suitable habitat area for Selaginella ciliaris and Selaginella plana under four combinations of future 
climate scenario within three different periods of time 
 

Year RCP Projection S. ciliaris (Area × 105 km2)  S. plana (Area × 105 km2) 
Loss Gain Total Future  Loss Gain Total Future 

2030 RCP 2.6 0.92 1.51 0.59 14.2 
 

0.95 1.14 0.19 8.9 
  RCP 4.5 0.9 1.6 0.7 14.31 

 
2.25 2.31 0.06 8.77 

  RCP 6.0 1.16 1.2 0.04 13.65 
 

1.48 1.49 0.01 8.72 
  RCP 8.5 1.56 1.4 -0.16 13.49 

 
1.38 1.35 -0.03 8.68 

2050 RCP 2.6 0.4 0.37 -0.03 13.58 
 

1.06 1.02 -0.04 8.67 
  RCP 4.5 0.51 0.42 -0.09 13.52 

 
1.7 1.62 -0.08 8.63 

  RCP 6.0 0.63 0.52 -0.11 13.5 
 

0.94 0.82 -0.12 8.59 
  RCP 8.5 1.06 0.83 -0.23 13.38 

 
1.06 0.87 -0.19 8.52 

2080 RCP 2.6 0.8 0.51 -0.29 13.32 
 

1.2 0.94 -0.26 8.45 
  RCP 4.5 0.78 0.41 -0.37 13.24 

 
1.46 0.97 -0.49 8.22 

  RCP 6.0 1.65 1.03 -0.62 12.99 
 

1.9 0.93 -0.97 7.74 
  RCP 8.5 2.69 1.82 -0.87 12.74 

 
2.6 1.34 -1.26 7.45 

Note: - = Negative mark indicates suitable habitat area contractions 
 
 

 
 

Figure 4. Redistribution of climatically suitable habitat under future climate projections 
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Core distributional shifts 
Given the aforementioned reasons over why core 

distributional shifts assessment was conducted only on 
Java, we may look first into the predicted distribution of 
both species' suitable habitat in this particular island. Under 
current climate condition, it has been predicted that there 
are approx. 55,676.4 km2 (41.5%) suitable areas for S. 
ciliaris and about 45,500.1 (33%) km2 areas are suitable 
habitat for S. plana. These numbers were predicted to 
gradually decreasing as future climate change altering the 
habitat capability to support the survival of both S. ciliaris 
and S. plana. In the year 2080, under all of the GHG 
emission trajectories, current suitable habitat area for S. 
ciliaris and S. plana will decrease by up to 11% and by up 
to 19% respectively. Furthermore, redistribution of 
predicted suitable habitat for both species, under future 
climate condition, will also alter its geometric distribution 
core. The centroid of the currently suitable habitat for S. 
ciliaris was located at the position of 109.786E longitude 
and 7.313S latitude in Central Java (Figure 1.B). The 
centroid of future suitable area under RCP 2.6 was 
predicted to shift marginally to west direction to the 
position of 109.760E, 7.310S. The shift under the RCP 4.5, 
RCP 6.0, and RCP 8.5, show a greater extent wherein the 
centroid shift about 26.13 km to 37.32 km to west direction 
at the position of 109.446E, 7.263S under RCP 4.5, 
109.547E, 7.312S under RCP 6.0, and 109.540, 7.277S 
under RCP 8.5. Likewise, major shift of currently suitable 
habitat centroid of S. plana has been predicted to occur 
under the RCP 4.5, RCP 6.0, and RCP8.5 whereas under 
the influence of RCP 2.6, the shift is relatively small. 
Under the RCP 2.6 the centroid predicted to shift to the 
north at the position of 109.579E, 7.300S, which is about 
2.5 km from its original position at the position of 
109.579E, 7.324S. Under the influence of other RCPs, the 
centroid shift to west direction about 18.76 to 49.78 km 
from its original position. The farthest shift of suitable 
habitat centroid is under the RCP 8.5 at the position of 
109.139E, 7.231S. The new centroid position under RCP 
4.5 and RCP 6.0 are 109.409E, 7.305S, and 109.165E, 
7.254S, respectively. Overall, there is tendency of centroid 
shifting to the western side of the island under all future 
RCP trajectories, and the weakest shift of suitable habitat 
core of both species is always under the influence of RCP 
2.6 (Figure 1.B). 
 

Discussion 
Recently, only a few studies attempt to model the 

impact of climate change on the sustainability of 
autotrophic non-vascular cryptogams (e.g., Cornelissen 
2007; Ellis et al. 2007). The number is even less for study 
which focuses on the particular genus such as Selaginella 
(e.g., Setyawan et al. 2017). Nonetheless, several studies 
have reported that the sustainability of Selaginella, as a 
member of biotic component of vegetation, is also 
predicted to be affected by any measured changes in 
climate both in the past condition and in the projected of 
future condition (e.g. Muller et al. 2003; An et al. 2005; 
Trivedi et al. 2008; Cao et al. 2010; Xu et al. 2010). 
Indeed, discrepancies may occur between different climate 

modeling system used in the preceding studies (Cheaib 
2012), but the approaches nevertheless can be functioning 
as an important research tool for assessing and predicting 
the effect of both current and future climate condition on 
the distribution of suitable habitat for, especially, genus of 
Selaginella.  

Selaginella ciliaris is predicted to has a wide but 
fragmented distribution in the southern part of mainland 
SEA region (South Vietnam, Cambodia, Myanmar, 
Peninsular Malaysia, and Singapore) and in most of the big 
islands in maritime SEA. The model prediction is in 
agreement with past and recent years studies reported its 
occurrences in Vietnam (Thin 1997; Costion and Lorence 
2012), Cambodia (Spring 1843; Zhang et al. 2013; Rundel 
and Middleton 2017), Myanmar (Spring 1843; Winter and 
Jansen 2003; Chang et al. 2012), Peninsular Malaysia and 
Singapore (Hanum and Hamzah 1999; Yusuf et al. 2003; 
Tan et al. 2014), Philippines (Barcelona 2003; Tan 2013), 
Sumatra (Spring 1843; Iwatsuki 1973: Wardani and Adjie 
2017), Borneo (Spring 1843; Iwatsuki and Kato 1981; Said 
2005). Sulawesi (Spring 1843), Java (Setyawan 2009; 
Setyawan 2012), and Papua (Johns et al. 2012; Gartmann 
2015). Likewise, the predicted distribution of Selaginella 
plana’s suitable habitat has almost the same pattern as the 
predicted suitable habitat for S. ciliaris. Several documents 
and studies had also reported the occurrence of S. plana in 
Vietnam (Spring 1843; Chang et al. 2012), Cambodia 
(Spring 1843; Chang et al. 2012), Myanmar (Chang et al. 
2012; Parveen et al. 2017), Peninsular Malaysia and 
Singapore (Turner et al. 1998; Chua et al. 2005; Bedawi et 
al. 2009), Philippines (Alston 1935; Zamora et al. 1999; 
Tan 2013; De Guzman et al. 2014), Sumatra (Sauerborn 
2003; Beukema and Noordwijk 2004), Borneo (Said 2005; 
Ahmad and Holdsworth 2008; Komara et al. 2016), 
Sulawesi (Mansur 2003; Hidayat 2011), Java (Rahayu et al. 
2012; Setyawan et al. 2013; Setyawan et al. 2015a;b; 
Setyawan et al. 2016; Trimanto and Hapsari 2016), and 
Papua (Sambas et al. 2003; Ebihara et al. 2012; Johns et al. 
2012).  

Based on the modeling results, constancy and stability 
of temperature (isothermality and temperature seasonality) 
are among the most important factors affecting the 
distribution of both S. ciliaris and S. plana. Isothermality 
(bio_3) is defined as the quantification of how large the 
diurnal temperature range oscillate with annual temperature 
oscillations, while temperature seasonality (bio_4) is 
defined as a measure of temperature change over the course 
of the year (O’Donnell and Ignizio 2012). Past studies 
confirmed the importance of stability of temperature in 
preserving the survival of genus Selaginella. Temperature, 
allegedly affect both the photosynthetic capability and 
preservation of photosynthetic apparatus of Selaginella 
(Jagels 1970, Eickmeier 1986). Additionally, water 
availability which was measured in annual precipitation is 
also among the most important factors affecting the 
distribution of both species. Water availability is correlated 
with many environmental factors that influence the 
biochemical and physiological processes of plants (e.g. 
Platt et al. 1994; Wang et al. 1998; Rusala et al. 2011). 
Therefore, these hydrothermal factors may have played 
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main roles in shaping the ecological adaptation and the 
distribution pattern of both S. ciliaris and S. plana. 
Moreover, these results also indicate that both S. ciliaris 
and S. plana appear to grow well in a highly isothermal 
environment and with low variability of temperature.  

The intensity of UV radiation also predicted to have a 
major role in shaping the distribution range of both S. 
ciliaris and S. plana. Generally, UVB radiation has a great 
effect on the sub-aerial organs of plants (Yang et al. 1994). 
Plants species subjected to elevated UVB reveal that UVB 
radiation affects plants morphology by inhibiting leaf area 
expansion and stem elongation (Caldwell et al. 1998). UVB 
radiation also influences the protective mechanism of 
plants (Bellare et al. 1995; Márquez-Escalante et al. 2006) 
and decreases photosynthetic activity (Jagels 1970; 
Battaglia et al. 2000). Another environmental factors, such 
as increased CO2 concentration, water stress, and 
availability of nutrients interact with this form of radiation 
(Wu et al. 2009), which in turn affect the plant response to 
the changes in environmental parameters (Caldwell et al. 
1998; Teklemariam and Blake 2003; Qaderi and Reid 
2005). Past studies on several Selaginella species also 
confirmed that net photosynthesis, stress regulation 
mechanism, and local distribution are closely related to the 
component of light source (Jagels 1970; Eickmeier 1979; 
Márquez-Escalante et al. 2006). However, further specific 
information on effects of UVB radiation on the changes in 
biochemistry and physiology of Selaginella is limited, 
hence future studies regarding these subjects are 
recommended.  

Future climate condition in SEA region has been 
predicted will significantly disturb the distribution of 
suitable habitat of S. ciliaris and S. plana, and alter its 
geographical distribution pattern. Despite there are some 
gained areas which were predicted to become suitable 
habitat in the early period of future climate change, overall 
projection shows a negative effect of future climate 
condition on the distribution of S. ciliaris and S. plana's 
suitable habitat; as the predicted losses of suitable habitat 
will be greater than the gains. Under the lowest and 
medium GHG emission projection (RCP 2.6, RCP 4.5 and 
RCP 6.0); wherein radiative forcing will gradually rise up 
before it stabilizes at the certain figure by 2100 
(Meinshausen et al. 2011; IPCC 2014), annual mean 
temperature will rise up to about 1.7-5°C in all areas of 
SEA region. Unlike in the case of temperature changes, the 
changes in precipitation will not be equivalent in all of 
SEA region areas. There will be both areas wherein the 
amount of precipitation shows an increasing tendency by 
up to 15% of current annual precipitation rate (Northern 
Philippines, Myanmar, and Laos) and areas wherein the 
amount of precipitation will tend to decrease by about 10% 
(e.g., southern Indonesia, Thailand, Laos, and Myanmar) 
by the end of 21st century (IPCC 2014). This condition 
predicted leads to a slight increase of S. ciliaris and S. 
plana's suitable habitat area by the end of 2030. The gains 
are mostly predicted to occur in a higher latitude area, as 
future climate increases its probability to support the 
existence of both species. However, for the next five 
decades, as climate continues to change, these figures will 

gradually to decrease. The same negative trend will also 
predict to occur under the worst GHG emission scenario 
(RCP 8.5), with no gained area will appear under this 
scenario in all periods of time. Core distributional shifts 
assessment indicates that there will be upward shifts to 
higher elevation area as the atmosphere warms, which is in 
line with certain studies that predicted a shift of forest 
ecosystems to a higher altitude (e.g. Walther et al. 2005; 
Bertrand et al. 2011). Increased temperature and 
occurrence of severe drought, as indicated by precipitation 
variability, should increase plant stress in some years 
(Kelly and Goulden 2008). Thus, expected to decrease the 
species' ability to survive in the drier, warmer, lower parts 
of its range (Allen and Breshears 1998; Lenoir et al. 
2008a,b) and increase its competitive ability and tolerance 
in the wetter, cooler, upper parts of its range (Parmesan and 
Yohe 2003; Parmesan 2006). 
 

Generally, plant species may migrate to higher 
elevations and latitude as its mechanism to cope with the 
changes in climate condition (Lenoir et al. 2008a; Bertrand 
et al. 2011). However, the trends may differ between 
narrowly distributed plant species and widely distributed 
plant species. Plants with narrow distribution usually have 
a constrained capability of ecological adaptation, and are 
more vulnerable to the impact of climate change, whereas 
plants with wider distribution tend to have broader 
adaptability and have a stronger resistibility to climate 
change (Hu et al. 2015). This tendency, is what the models 
have predicted in this study, wherein the distribution of 
suitable habitat for both species is increased at first, but 
then began to decrease as climate change intensified. 
Several studies have also reported the early sign of plants 
migration into higher altitude areas under the effect of 
changes in climate condition (e.g., Zhang et al. 2001; 
Parmesan and Yohe 2003; Root et al. 2003; Leng et al. 
2008; Lenoir et al. 2008a). Additionally, an attempt of 
evaluating the impact of climate change on the distribution 
of suitable habitat for both species, should also incorporate 
anthropogenic factors such as deforestation activity which 
will be resulting in fragmentation and shrinkage of habitat 
area. The results of this study may suggest that both S. 
ciliaris and S. plana have a medium degree of vulnerability 
to the impact of climate changes, nonetheless, under the 
influence of human-induced land conversion, the loss of 
suitable habitat for both species will be greater than 
expected. Therefore, more studies are needed to quantify 
and qualify the future anthropogenic impacts on the 
sustainability of S. ciliaris and S. plana.  

The maps, presented in this study, depict the predicted 
distribution of suitable habitat for both species, which were 
built by using climate, topography, edaphic, and UVB 
radiation variables. Nonetheless, it must be taken into 
account that, like most of the ENM, the "predicted" 
distribution of suitable habitat does not represent the "true" 
prediction of the distribution of species eco-
physiologically, but rather the prediction of the distribution 
of "suitable" habitat based only on the aforementioned 
predictors. Therefore, in the predicted suitable area, the 
species may not actually exist. There are also several 
assumed reasons for the absence of species in the predicted 
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area, i.e. (i) Micro-climate variation affect the existence of 
species in the predicted areas, but were not included in the 
model as a result of limited availability of data. (ii) The 
weak resolution of the recorded environmental variables 
has not yet capable of represents the unique environmental 
condition that greatly drives the probability of the 
occurrence of species. (iii) Human-induced changes that 
causing the predicted areas are no longer habitable for the 
species (e.g. deforestation, construction activity, etc.). 
Moreover, omission error may also occur as a result of 
occurrence data which were supplied into the models did 
not represent all the varieties of environmental condition 
that can sustain the existence of species. Despite all of bias 
correction methods which were carefully applied to achieve 
greater quality of models, these possible mismatches 
between the models and real-life situation may still occur. 
Nevertheless, we may acknowledge the result of the model 
as an appropriate representation of how the current climate 
condition shapes the distribution of suitable habitat for S. 
ciliaris and S. plana, and its predicted redistribution under 
the effect of future climate change. 

Building an ideal model requires the availability of 
multiple compounding factors which are expected to have 
either direct or indirect effect on the target species and its 
associated biota. However, such ideal packages of data are 
currently limited. This limitation in the availability of more 
detailed ecological and physiological data prevents the 
construction of more ideal models (Morin and Thriller 
2009; Sinclair et al. 2010; Ellis 2011). Nevertheless, recent 
development of new climate models and the refining of 
current models provide opportunity to build more precise 
and ideal model. Further modeling attempt should also 
incorporate potential human-induced land use/land cover 
changes, biotic interactions between species in the regional 
ecosystems, more detailed ecological data, and better 
presence data which accurately represent the variability of 
ecological niche of species. Despite all of these limitations, 
this study provides the baseline of understanding the 
potential effect of climate change on the distribution of 
predicted suitable habitat for S. ciliaris and S. plana. Using 
different technique of species distribution modeling, such 
as profile technique (e.g. DOMAIN, ENFA) and 
Regression-based technique (e.g. GLM, GAM, and 
MARS), may present slightly different quantitative results. 
Nonetheless, we believe that by using currently available 
resources of data, the overall trend and projection results 
would be similar. Therefore, it is concluded that the 
sustainability of S. ciliaris and S. plana potentially will 
negatively be influenced by all of the scenarios of future 
climate condition presented in this study. 
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