The use of statistical models in identifying skipjack tuna habitat characteristics during the Southeast Monsoon in the Bone Gulf, Indonesia

##plugins.themes.bootstrap3.article.main##

SAFRUDDIN HASYIM
https://orcid.org/0000-0003-3877-6333
RACHMAT HIDAYAT
https://orcid.org/0000-0003-1664-0515
ST. AISJAH FARHUM
MUKTI ZAINUDDIN
https://orcid.org/0000-0003-2018-7143

Abstract

Abstract. Safruddin, Hidayat R, Farhum SA, Zainuddin M. 2022. The use of statistical models in identifying skipjack tuna habitat characteristics during the Southeast Monsoon in the Bone Gulf, Indonesia. Biodiversitas 23: 2231-2237. Skipjack tuna (Katsuwonus pelamis) is the main fishery product in the Bone Gulf, Indonesia, since it has high economic value and is widely accepted by the market. The migration of skipjack tuna can be described by oceanographic dynamics, influenced by seasonal changes. This study aimed to explore the relationship between the oceanographic factors and the distribution and abundance of skipjack tuna obtained by pole and line fishing in the Bone Gulf, Indonesia. The research was conducted during the southeast monsoon season (April-September) from 2015 until 2018. Three oceanographic parameters were used to understand this relationship, i.e., Sea Surface Temperature (SST), Sea Surface Chlorophyll-a (SSC), and water depth. Generalized Additive Models (GAMs) and Generalized Linear Models (GLMs) used to predict the spatial pattern of the skipjack tuna showed that all considered parameters significant influenced the distribution of skipjack tuna in the study area. The fish are mostly distributed from coastal to offshore areas, ranging between 50 to 2000 meters and even wider. The concentration tends to be high within the range of 29.5 to 30.5°C of SST, 0.25 to 0.35 mgm-3 of SSC, and 500 to 1500 meters of water depth. The research also found that the skipjack tuna migration to the Bone Gulf may have followed the current water interruption during the southeast monsoon, for preferred warmer temperatures and lower primary productivity waters in the offshore areas. This factor may represent the optimal habitat of skipjack tuna during the period and can be the basis for determining the skipjack fishing schedule in the Bone Gulf.

##plugins.themes.bootstrap3.article.details##

References
Andrade HA. 2003. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western Atlantic. Fish. Oceanogr. 12 (1): 10–18. https://doi.org/10.1046/j.1365-2419.2003.00220.x
Andrade HA, Garcia CAE. 1999. Skipjack tuna fishery in relation to sea surface temperature off the southern Brazilian coast. Fish. Oceanogr. 8 (4): 245–254. https://doi.org/10.1046/j.1365-2419.1999.00107.x
Artetxe-Arrate I, Fraile I, Marsac F, Farley JH, Rodriguez-Ezpeleta N, Davies CR, Clear NP, Grewe P, Murua H. 2020. A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean, 1st ed, Advances in Marine Biology. Elsevier Ltd. https://doi.org/10.1016/bs.amb.2020.09.002
Duffy LM, Kuhnert PM, Pethybridge HR, Young JW, Olson RJ, Logan JM, Goñi N, Romanov E, Allain V, Staudinger MD, Abecassis M, Choy CA, Hobday AJ, Simier M, Galván-Magaña F, Potier M, Ménard F. 2017. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep. Res. Part II Top. Stud. Oceanogr. 140: 55–73. https://doi.org/10.1016/j.dsr2.2017.03.003
Galland G, Rogers A, Nickson A. 2016. Netting billions: a global valuation of tuna. Pew Charitible Trust 1–22.
Gordon AL. 2005. Oceanography of the Indonesia Seas and Their Throughflow. Oceanography 18 (4): 14–27. https://doi.org/https://doi.org/10.5670/oceanog.2005.01
Hastie T, Tibshirani R. 1990. Generalized Additive Models. Chapman and Hall, London. 352 pp.
Hampton J. 2010 Tuna Fisheries Status and Management in the Western and Central Pacific Ocean. Oceanic Fisheries Program. New Caledonia. 23 pages.
Hidayat R, Zainuddin M, Safruddin S, Mallawa A, Farhum SA. 2019a. Skipjack Tuna (Katsuwonus pelamis) catch in relation to the Thermal and Chlorophyll-a Fronts during May – July in the Makassar Strait. IOP Conf. Ser. Earth Environ. Sci. 253 (1): 012045. https://doi.org/10.1088/1755-1315/253/1/012045
Hidayat R, Zainuddin M, Putri ARS. 2019b. Skipjack tuna (Katsuwonus pelamis) catches in relation to chlorophyll-a front in Bone Gulf during the southeast monsoon. AACL Bioflux 12 (1): 209–218.
Hidayat R, Zainuddin M. 2019. Detection of cyclonic and anti-cyclonic eddy in relation to potential Skipjack Tuna fishing ground in Makassar Strait. IOP Conf. Ser. Earth Environ. Sci. 241 (1): 012011. https://doi.org/10.1088/1755-1315/241/1/012011
IOTC. 2019. Nominal Catch by Species and Gear, by Vessel Flag Reporting Country. IOTC-2019-DATASETS-NCDB. https://www.iotc.org
IOTC. 2020. Review of the statistical data and fishery trends for tropical tunas. https://www.iotc.org
Iskandar I, Sari QW, Setiabudiday D, Yustian I, Monger B. 2017. The distribution and variability of chlorophyll-a bloom in the southeastern tropical Indian ocean using empirical orthogonal function analysis. Biodiversitas 18 (4): 1546–1555. https://doi.org/10.13057/biodiv/d180433
Kunarso, Hadi S, Ningsih NS, Baskoro MS. 2011. Variabilitas Suhu dan Klorofil-a di Daerah Upwelling pada Variasi Kejadian ENSO dan IOD di Perairan Selatan Jawa sampai Timor. ILMU Kelaut. Indones. J. Mar. Sci. 16 (3): 171-180. https://doi.org/10.14710/ik.ijms.16.3.171-180 [indonesia]
Mugo R, Saitoh SI, Nihira A, Kuroyama T. 2010. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fish. Oceanogr. 19 (5): 382–396. https://doi.org/10.1111/j.1365-2419.2010.00552.x
Olson RJ, Young JW, Ménard F, Potier M, Allain V, Goñi N, Logan JM, Galván-Magaña F. 2016. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas. Adv. Mar. Biol. 74: 199–344. https://doi.org/10.1016/bs.amb.2016.06.002
Prista N, Diawaia N, Costa MJ, Jones C. 2011. Use of SARIMA models to assess data-poor fisheries: A case study with a sciaenid fishery off Portugal. Fish. Bull. 109 (2): 170–185.
Safruddin. 2013. Estimates of Japanese sandeel (Ammodytes personatus) distribution and biomass in the northern coast of Hokkaido, Japan, using a quantitative echosounder. [Dissertation]. Hokkaido University
Safruddin, Rachmat H, M Zainuddin, 2018 Effects of environmental factors on anchovies Stolephorus sp distribution in Bone Gulf, Indonesia AACL Bioflux 11(2):387-393.
Safruddin, R. Hidayat, Y. K. Dewi, M. T. Omar, S. A. Farhum, A. Mallawa, M. Zainuddin, 2020. The Distribution of Yellowfin Tuna Based on Sea Surface Temperature dan Water Depth Parameters In The Bone Gulf, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 654 (1): 012064. https://doi.org/10.1088/1755-1315/564/1/012064
Sari QW, Siswanto E, Setiabudidaya D, Yustian I, Iskandar I. 2018. Spatial and temporal variability of surface chlorophyll-a in the gulf of Tomini, Sulawesi, Indonesia. Biodiversitas 19 (3): 743–751. https://doi.org/10.13057/biodiv/d190306
Selao A, Malik AA, Yani FI, Mallawa A, Safruddin. 2019. Remote Chlorophyll-a and SST to Determination of Fish Potential Area in Makassar Strait Waters Using MODIS Satellite Data. IOP Conf. Ser. Earth Environ. Sci. 370 (1): 012047. https://doi.org/10.1088/1755-1315/270/1/012047
Selvaraj JJ, Arunachalam V, Coronado-Franco KV, Romero-Orjuela LV, Ramírez-Yara YN. 2020. Time-series modeling of fishery landings in the Colombian Pacific Ocean using an ARIMA model. Reg. Stud. Mar. Sci. 39: 101477. https://doi.org/10.1016/j.rsma.2020.101477
Syah AF, Gaol JL, Zainuddin M, Apriliya NR, Berlianty D, Mahabrort D. 2020. Detection of potential fishing zones of Bigeye tuna (Thunnus obesus) at profundity of 155 M in the eastern Indian Ocean. Indones. J. Geogr. 52 (1): 29–35. https://doi.org/10.22146/ijg.43708
Takarina ND, Nurliansyah W, Wardhana W. 2019. Relationship between environmental parameters and the Plankton community of the Batuhideung fishing grounds, Pandeglang, Banten, indonesia. Biodiversitas 20 (1): 171–180. https://doi.org/10.13057/biodiv/d200120
Tseng CT, Sun CL, Yeh SZ, Chen SC, Su WC. 2010. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data. Int. J. Remote Sens. 31: 4543–4558. https://doi.org/10.1080/01431161.2010.485220
Wang J, Chen X, Chen Y. 2016. Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean. Int. J. Remote Sens. 37 (24): 6149–6164. https://doi.org/10.1080/01431161.2016.1256509
Wijaya A, Zakiyah U, Sambah AB, Setyohadi D. 2020. Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali Strait, Indonesia. Biodiversitas J. Biol. Divers. 21 (11): 5283–5290. https://doi.org/10.13057/biodiv/d211132
Wood SN. 2006. Generalized Additive Models: An Introduction with R. Chapman & Hall, London. 392 pp.
Yuniarti A, Maslukah L, Helmi M. 2013. Studi Variabilitas Suhu Permukaan Laut Berdasarkan Citra Satelit Aqua MODIS Tahun 2007-2011 di Perairan Selat Bali. J. Oceanogr. 2 (4): 416–421 [Indonesian]
Zainuddin M, Farhum SA, Safruddin S, Selamat MB, Sudirman S, Nurdin N, Syamsuddin M, Ridwan M, Saitoh SI. 2017. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, southwestern Coral Triangle tuna, Indonesia. PLoS One 12 (10): 1–19. https://doi.org/10.1371/journal.pone.0185601
Zainuddin M, Amir MI, Bone A, Farhum SA, Hidayat R, Putri ARS, Mallawa A, Safruddin, Ridwan M. 2019. Mapping distribution patterns of skipjack tuna during January-May in the Makassar Strait. IOP Conf. Ser. Earth Environ. Sci. 370 (1): 012004. https://doi.org/10.1088/1755-1315/370/1/012004

Most read articles by the same author(s)