Aboveground biomass and carbon stock of Rhizophora apiculata forest in Ca Mau, Vietnam

##plugins.themes.bootstrap3.article.main##

TRAN QUANG BAO
NGUYEN THI HA
BUI THI MINH NGUYET
VO MINH HOAN
LE HONG VIET
DANG VIET HUNG

Abstract

Abstract. Bao TQ, Ha NT, Nguyet BTM, Hoan VM, Viet LH, Hung DV. 2021. Aboveground biomass and carbon stock of Rhizophora apiculata forest in Ca Mau, Vietnam. Biodiversitas 23: 403-414. Despite the small proportion of mangrove forests globally, they contribute significantly in carbon storage. Yet, biomass and carbon stock in mangrove forests might vary depending on various factors including the dominant species that occurred. This study was conducted to determine the biomass and carbon stock of a mangrove forest dominated by Rhizophora apiculata Blume in Ca Mau, Vietnam. Data were collected from 56 representative sample plots (50m x 50m), and 46 sample trees with different age classes and diameter sizes were cut down to measure the fresh biomass. The dry biomass and carbon content were analyzed in the laboratory. The average aboveground biomass and carbon stock of the individual tree and the R. apiculata forest at different diameter sizes had a significant difference and were mostly found in the stem (74.5%-79.5%). The conversion factor from fresh biomass to dry biomass was 0.56; the conversion factor from dry biomass to carbon was 0.46. The total biomass of the individual trees had a close relationship with two variables diameter at breast height (DBH) and height (Hvn) in the form of the logarithmic function: ln(Wtk) = -1,86412 - 1,95419*ln(Hvn) + 2,26798*ln(DBH*Hvn). The total biomass and carbon stock of the entire forest stand increased in accordance with the diameter size and age classes. The R. apiculata stand had a density of 1,040-15,800 trees/ha and a timber volume of 27.2 to 365.6 m3/ha. The average biomass of the R. apiculata stand was 191.1 tons/ha with a range from 49.6 to 357.4 tons/ha. The carbon stock in forest biomass ranged from 23.8 to 188.7 tons C/ha, with an average of 117.4 tons C/ha. The forest’s CO2 absorption ranged from 60.0 to 691.7 tons CO2/ha, with an average of 415.9 tons/ha. The carbon stocks of trees of age class I to age class VI were 41.6 tons C/ha, 79.4 tons C/ha, 101.4 tons C/ha, 132.9 tons C/ha, 154.0 tons C/ha, and 167.4 tons C/ha, respectively.

##plugins.themes.bootstrap3.article.details##

References
Alimbon, J. A., & Manseguiao, M. R. S. (2021). Species composition, stand characteristics, aboveground biomass, and carbon stock of mangroves in Panabo Mangrove Park, Philippines. Biodiversitas Journal of Biological Diversity, 22(6). doi:10.13057/biodiv/d220615
Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313-322. doi:10.4155/cmt.12.20
Analuddin, K., La Ode, K., La Ode, M. Y. H., Andi, S., Idin, S., La, S., . . . Kazuo, N. (2020). Aboveground biomass, productivity and carbon sequestration in Rhizophora stylosa mangrove forest of Southeast Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 21(4). doi:10.13057/biodiv/d210407
Cai, S., Kang, X., & Zhang, L. (2013). Allometric models for aboveground biomass of ten tree species in northeast China. Annals of Forest Research, 56(1), 105-122. doi:10.15287/afr.2013.47
Camacho, L. D., Gevaña, D. T., Carandang, A. P., Camacho, S. C., Combalicer, E. A., Rebugio, L. L., & Youn, Y.-C. (2011). Tree biomass and carbon stock of a community?managed mangrove forest in Bohol, Philippines. Forest Science and Technology, 7(4), 161-167. doi:https://doi.org/10.1080/21580103.2011.621377
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., . . . Kira, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. doi:https://doi.org/10.1007/s00442-005-0100-x
Christensen, B. (1978). Biomass and primary production of Rhizophora apiculata Bl. in a mangrove in southern Thailand. Aquatic Botany, 4, 43-52. doi:https://doi.org/10.1016/0304-3770(78)90005-0
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature geoscience, 4(5), 293. doi:https://doi.org/10.1038/ngeo1123
FAO. (2020). Global Forest Resources Assessment 2020: Main Reports. Rome: FAO.
Hoàn, H. ?., Ki?t, B. N. T., Bình, C. H., & Nam, V. N. (2018). Sinh kh?i c?a qu?n th? ???c ?ôi t?i Khu D? tr? sinh quy?n r?ng ng?p m?n C?n Gi?. Journal of Agriculture and Rural Development, 24, 122-128.
IPCC. (2006). Guidelines for National Greenhouse Gas Inventories. In In Volume 4: Agriculture, Forestry and Other Land Use. Institute for Global Environmental Strategies (IGES), Japan.
Jin-Eong, O., Khoon, G. W., & Clough, B. (1995). Structure and productivity of a 20-year-old stand of Rhizophora apiculata Bl. mangrove forest. Journal of Biogeography, 417-424. doi:https://doi.org/10.2307/2845938
Jones, T., Ratsimba, H., Ravaoarinorotsihoarana, L., Cripps, G., & Bey, A. (2014). Ecological variability and carbon stock estimates of mangrove ecosystems in northwestern Madagascar. Forests, 5(1), 177-205. doi:https://doi.org/10.3390/f5010177
Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518-527. doi:https://doi.org/10.1890/13-0640.1
Khun, V., Lee, D. K., Hyun, J. O., Park, Y. D., & Combalicer, M. S. (2012). Carbon Storage of Dipterocarpus tuberculatus, Terminalia tomentosa and Pentacme. Journal of Environmental Science and Management(1).
Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128-137. doi:https://doi.org/10.1016/j.aquabot.2007.12.006
Kuenzer, C., Bluemel, A., Gebhardt, S., Vo, T., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3, 878-928. doi:https://doi.org/10.3390/rs3050878
Lê H?ng, P. (1996). ?ánh giá sinh tr??ng, t?ng tr??ng, sinh kh?i n?ng su?t r?ng tr?ng Thông ba lá (Pinus kesya royle ex Gordon) vùng ?à L?t, Lâm ??ng. (Ph.D Dissertation), Vietnamese Academy of Forest Sciences, Ha Noi.
Lu, D. (2006). The potential and challenge of remote sensing?based biomass estimation. International journal of remote sensing, 27(7), 1297-1328. doi:https://doi.org/10.1080/01431160500486732
Malhi, Y., Meir, P., & Brown, S. (2002). Forests, carbon and global climate. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1797), 1567-1591. doi:https://doi.org/10.1098/rsta.2002.1020
Marchand, C. (2017). Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana). Forest ecology and management, 384, 92-99. doi:https://doi.org/10.1016/j.foreco.2016.10.030
MARD. (2018). Quy?t ??nh s? 1187/Q?-BNN-TCLN công b? hi?n tr?ng r?ng toàn qu?c n?m 2017. Ministry of Agriculture and Rural Development
Mitchard, E., Saatchi, S., Lewis, S., Feldpausch, T., Woodhouse, I., Sonké, B., . . . Meir, P. (2011). Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest–savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sensing of Environment, 115(11), 2861-2873. doi:https://doi.org/10.1016/j.rse.2010.02.022
Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., . . . Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 5(12), 1089. doi:https://doi.org/10.1038/nclimate2734
Nam, V. N. (2003). Nghiên c?u sinh kh?i và n?ng su?t s? c?p qu?n xã m?m tr?ng (Avicennia alba) t? nhiên tr?ng t?i C?n Gi?, thành ph? H? Chí Minh. (Ph.D Dissertation), Vietnamese Academy of Forest Sciences, Ha Noi.
Nam, V. N. (2011). Nghiên c?u tích t? các bon c?a r?ng ???c ?ôi (Rhizonphora apiculata Blume) tr?ng ? khu d? tr? sinh quy?n ng?p m?n C?n Gi?, thành ph? H? Chí Minh. Journal of Agriculture and Rural Development, 18 78-83.
Návar, J. (2009). Biomass component equations for Latin American species and groups of species. Annals of Forest Science, 66(2), 208-208. doi:http://dx.doi.org/10.1051/forest/2009001
Ng?t, P. V., Em, Q. V. T., H?ng, N. K., & Nhung, T. T. T. (2012). Vai trò c?a r?ng ng?p m?n ven bi?n Vi?t Nam. Journal of Sciences(33), 115.
Peng, D., Zhang, H., Liu, L., Huang, W., Huete, A. R., Zhang, X., . . . Wang, C. (2019). Estimating the aboveground biomass for planted forests based on stand age and environmental variables. Remote Sensing, 11(19), 2270. doi:https://doi.org/10.3390/rs11192270
Ph??ng, V. T. (2012). Xác ??nh tr? l??ng Các bon và phân tích hi?u qu? kinh t? r?ng tr?ng Thông ba lá (Pinus kesiya Royle Ex Gordon) theo c? ch? phát tri?n s?ch ? Vi?t Nam. (Ph.D Dissertation), Vietnamese Academy of Forest Sciences, Ha Noi.
Rumengan, A. P., Mantiri, D. M., Rompas, R., Hutahaean, A., Kepel, T. L., Paruntu, C. P., . . . Gerung, G. S. (2018). Carbon stock assessment of mangrove ecosystem in Totok Bay, southeast Minahasa Regency, North Sulawesi, Indonesia. Aquaculture, Aquarium, Conservation & Legislation, 11(4), 1280-1288.
Sun, G., Ranson, K. J., Guo, Z., Zhang, Z., Montesano, P., & Kimes, D. (2011). Forest biomass mapping from lidar and radar synergies. Remote Sensing of Environment, 115(11), 2906-2916. doi:http://dx.doi.org/10.1016/j.rse.2011.03.021
Suwanto, A., Takarina, N. D., Koestoer, R. H., & Frimawaty, E. (2021). Diversity, biomass, covers, and NDVI of restored mangrove forests in Karawang and Subang Coasts, West Java, Indonesia. Biodiversitas Journal of Biological Diversity, 22(9). doi:10.13057/biodiv/d220960
Thông, V. V. (1998). Nghiên c?u c? s? xác ??nh sinh kh?i cây cá th? và lâm ph?n Keo lá tràm (Acacia auriculiformis Cunn) t?i Thái Nguyên. (Master Thesis), Vietnam National University of Vietnam, Ha Noi.
Trí, N. H. (1986). Góp ph?n nghiên c?u sinh kh?i và n?ng su?t qu?n xã ???c ?ôi (Rhizophora apliculata BL.) ? Cà Mau, t?nh Minh H?i. (Ph.D Dissertation), Hanoi National University of Education, Ha Noi.
Van, T., Rayachhetry, M., & Center, T. (2000). Estimating above-ground biomass of Melaleuca quinquenervia in Florida, USA. Journal of Aquatic Plant Management, 38, 62-67.
Van Vinh, T., Marchand, C., Vu, T., Linh, T., Vinh, D., & Allenbach, M. (2018). Allometric models to estimate above-ground biomass and carbon stocks in Rhizophora apiculata tropical managed mangrove forests (Southern Viet Nam). Forest Ecology and Management, 434, 131-141. doi:10.1016/j.foreco.2018.12.017
Zhang, F., Zhou, G., Hiratsuka, M., Tanaka, K., & Morikawa, Y. (2013). Above-ground Biomass of Subtropical Evergreen Broadleaf Forests in Longwangtan, Guangdong, China. ??????, 26(1), 17-28.
Zianis, D., & Mencuccini, M. (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187(2–3), 311-332. doi:http://dx.doi.org/10.1016/j.foreco.2003.07.007