Multiple antibiotic resistance and virulence factors of Staphylococcus aureus strains isolated from dairy farms in South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

SARTIKA JUWITA
AGUSTIN INDRAWATI
https://orcid.org/0000-0003-3135-009X
RETNO DAMAJANTI
https://orcid.org/0000-0002-0182-3880
SAFIKA
https://orcid.org/0000-0001-7758-3118
NI LUH PUTU IKA MAYASARI
https://orcid.org/0000-0002-4468-8762

Abstract

Abstract. Juwita S, Indrawati A, Damajanti R, Safika, Mayasari NLPI. 2021. Multiple antibiotic resistance and virulence factors of Staphylococcus aureus strains isolated from dairy farms in South Sulawesi, Indonesia. Biodiversitas 23: 1015-1022. Antimicrobial resistance (AMR) is an important issue affecting human and animal health worldwide. This study aimed to investigate antibiotic resistance and determine the virulence factors of S. aureus isolated from the dairy farms in South Sulawesi, Indonesia. Thirty-one isolates of S. aureus were tested for sensitivity to 9 types of antibiotics using the Kirby-Bauer disk diffusion method. The analysis of antibiotic resistance and virulence genes in S. aureus isolates was performed by the conventional PCR method. The results showed that S. aureus isolates from human samples were resistant to penicillin G (PEN) (86%), ampicillin (AMP) (86%), oxacillin (OXA) (14%), cefoxitin (FOX) (14%), tetracycline (TET) (43%) and ciprofloxacin (CIP) (14%). Staphylococcus aureus isolates from the animal samples were resistant to penicillin G (PEN) (50%), ampicillin (AMP) (50%), tetracycline (TET) (15%), and erythromycin (5%). Meanwhile, S. aureus isolates from dangke were resistant to penicillin G (PEN) and ampicillin (AMP) (50% each). Antimicrobial resistance genes for blaTEM (83%), mecA (17%), and tetA (100%) were detected in S. aureus isolates from human samples, whereas those for blaTEM (90%) and tetA (100%) were detected in isolates from animal samples. Meanwhile, the genes for blaTEM (100%) were detected in isolates from dangke. A total of 19 S. aureus isolates harbored the virulence gene for fnbA (26%), clfA (58%), hla (58%), and tst (21%). The use of antibiotics in humans and animals needs to be implemented properly in local communities to prevent the spread of antibiotic resistance. The presence of the tst gene in raw milk is essential for consumer protection against the risk of toxic shock syndrome.

##plugins.themes.bootstrap3.article.details##

References
Abdu AB, Mirabeau TY. 2019. Prevalence of qnr genes among multidrug resistance Staphylococcus aureus from clinical isolates. JAMMR 30(10): 1-10. DOI: 10.9734/JAMMR/2019/V30i1030245.
Abrar S, Ain NU, Liaqat H, Hussain S, Rasheed F, Riaz S. 2019. Distribution of blaCTX?-?M, blaTEM, blaSHV, and blaOXA genes in Extended-spectrum-?-lactamase-producing Clinical isolates: A three-year multi-center study from Lahore, Pakistan. Antimicrobial resistance and infection control 8(80): 1-10. DOI: 10.1186/s13756-019-0536-0.
Acosta AC, Oliveira PRF, Albuquerque L, Silva IF, Medeiros ES, Costa MM, Junior JWP, Mota RA. 2018. Frequency of Staphylococcus aureus virulence genes in milk of cows and goats with mastitis. Pesq Vet Bras 38(11): 2029-2036. DOI:10.1590/1678-5150-PVB-5786.
Akya A, Chegenelorestani R, Zadeh JS, Bozorgomid A. 2020. Antimicrobial resistance of Staphylococcus aureus isolated from hospital wastewater in Kermanshah, Iran. Risk Management and Healthcare Policy 13: 1035-1042. DOI: 10.2147/RMHP.S261311.
Andrade NC, Laranjo M, Costa MM, Queiroga MC. 2021. Virulence factor in Staphylococcus associated with small ruminant mastitis: Biofilm production and antimicrobial resistance genes. Antibiotics 10(633): 1-18. DOI: 10.3390/antibiotics10060633.
Arab H, Sadi BS, Amin K. 2018. Effect of iron nano-particle’s on expression of tetracycline resistance encoding genes in Staphylococcus aureus by Real-Time PCR. J Hellenic Vet Med Soc 69(2): 973-978. DOI: 10.12681/jhvms.18025.
Beceiro A, Tomás M, Bou G. 2013. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?. Clin Microbiol Rev 26(2): 185–230. DOI: 10.1128/CMR.00059-12.
Byrne MK, Miellet S, McGlinn A, Fish J, Meedya S, Reynolds N, van Oijen AM. 2019. The drivers of antibiotic use and misuse: the development and investigation of a theory driven community measure. BMC Public Health 19(1425): 1-11. DOI: 10.1186/s12889-019-7796-8.
Cepas V, Soto SM. 2020. Relationship between virulence and resistance among gram-negative bacteria. Antibiotics 9(719): 1-11. DOI:10.3390/antibiotics9100719.
Chen D, Song Q, Xu Z, Zhang D. 2018. Characterization of enterotoxin A-producing Staphylococcus aureus. Infect Drug Resist 1: 531-538. DOI: 10.2147/IDR.S164278.
Cheung GYC, Bae JS, Otto M. 2021. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12(1): 547-569. DOI: 10.1080/21505594.2021.1878688.
CLSI. 2018. Performance standards of antimicrobial susceptibility testing. 28th ed. CLSI Supplement M100. Clinical and Laboratory Standards Institute, Wayne, United States.
Dadgostar P. 2019. Antimicrobial Resistance: Implications and costs. Infect Drug Resist 12: 3903–3910. DOI: 10.2147/IDR.S234610.
Derakhshan S, Navidinia M, Haghi F. 2021. Antibiotic susceptibility of human-associated Staphylococcus aureus and its relation to agr typing, virulence genes, and biofilm formation. BMC Infect Dis 21(627): 1-10. DOI: 10.1186/s12879-021-06307-0.
Deyno S, Toma A, Worku M, Bekele M. 2017. Antimicrobial resistance profile of Staphylococcus aureus isolates isolated from ear discharges of patients at University of Hawassa comprehensive specialized hospital. BMC Pharmacol Toxicol 18(1): 1-7. DOI: 10.1186/s40360-017-0141-x.
Dittmann KK, Chaul LT, Lee SHI, Corassin CH, Fernandes de Oliveira CA, Pereira De Martinis EC, Alves VF, Gram L, Oxaran V. 2017. Staphylococcus aureus in some Brazilian dairy industries: Changes of Contamination and Diversity. Front. Microbiol. 8: 1-12. https://doi.org/10.3389/fmicb.2017.02049.
Divyakolu S, Chikkala R, Ratnakar K, Sritharan V. 2019. Hemolysins of Staphylococcus aureus—An update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Advances in Infectious Diseases (9): 80-104. DOI: 10.4236/aid.2019.92007.
Fejzic N, Begagic M, Šeri?-Hara?i? S, Smajlovic M. 2014. Beta lactam antibiotics residues in cow's milk: comparison of efficacy of three screening tests used in Bosnia and Herzegovina. Bosn J Basic Med Sci 14(3): 155–159.DOI: 10.17305/bjbms.2014.3.109.
Fetsch A, Johler S. 2018. Staphylococcus aureus as a foodborne pathogen. Curr Clin Micro Rpt 5(2): 88-96. DOI: 10.1007/s40588-018-0094-x.
Florez AB, Alegria A, Rossi F, Delgado S, Felis GE, Torriani S, Mayo B. 2014. Molecular identification and quantification of tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses. Biomed Research International (2014): 1-10.
Foster TJ. 2017. Antibiotic resistance in Staphylococcus aureus current status and future prospects. FEMS Microbiology Reviews 41(3): 430449. DOI: 10.1093/femsre/fux007.
Fursova KK, Shchannikova MP, Loskutov IV, Shepelyakovskay AO, Laman AG, Boutanaev AM, Sokolov SL, Artem'eva OA, Nikanova DA, Zinovieva NA, Brovko FA. 2018. Exotoxin diversity of Staphylococcus aureus isolated from milk of cows with subclinical mastitis in Central Russia. J Dairy Sci 101(5): 4325-4331. DOI: 10.3168/jds.2017-14074.
Gergova RT, Tsitou VS, Gergova II, Muhtarova AA, Mitov IG. 2019. Correlation of methicillin resistance and virulence genes of Staphylococcus aureus with infection types and mode of acquisition in Sofia, Bulgaria. Afr J Clin Exper Microbiol 20(4): 280-288. DOI: 10.4314/ajcem.v20i4.3.
Graham DW, Bergeron G, Bourassa MW, Dickson J, Gomes F, Howe A, Kahn LH, Morley PS, Scott HM, Simjee S, Singer RS, Smith TC, Storrs C, Wittum TE. 2019. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann NY Acad Sci 1441(1): 17-30. DOI: 10.1111/nyas.14036.
Hassanzadeh S, Pourmand MR, Afshar D, Dehbashi S, Mashhadi R. 2016. TENT: A rapid DNA extraction method of Staphylococcus aureus. Iran J Public Health 45(8): 1093-1095.
Indrawati A, Khoirani K, Setyaningsih S, Affif U, Safika, Ningrum SG. 2021. Detection of tetracycline resistance genes among Escherichia coli isolated from layer and broiler breeder in West Java, Indonesia. Tropical Animal Science Journal 44(3): 267-272.
Kateete DP, Kimani CN, Katabazi FA, Okeng A, Okee MS, Nanteza A, Joloba ML, Najjuka FC. 2010. Identification of Staphylococcus aureus: DNase and mannitol salt agar improve the efficiency of the tube coagulase test. Ann Clin Microbiol Antimicrob 9(23): 1-7. DOI: 10.1186/1476-0711-9-23.
Kepel B, Fatimawali. 2015. Analysis of 16SrRNA gene and mercury reduction ability of mercury resistant bacteria isolated from feces of Patient with mercury amalgam at Puskesmas Bahu in Manado. Jurnal Kedokteran Yarsi 23(1): 045-055.
Klous G, Huss A, Heederik DJJ, Coutinho RA. 2016. Human–livestock contacts and their relationship to transmission of zoonotic pathogens, a systematic review of literature. One Health 2: 65-67. DOI: 10.1016/j.onehlt.2016.03.001.
Kou X, Cai H, Huang S, Ni Y, Luo B, Qian H, Ji H, Wang X. 2021. Prevalence and characteristics of Staphylococcus aureus isolated from retail raw milk in Northern Xinjiang, China. Front. Microbiol 12: 1-13. DOI: 10.3389/fmicb.2021.705947.
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, Devraj JP, Kumar S, Singh B, Tiwari RR. 2021. Futuristic non-antibiotic therapies to combat antibiotic resistance: A review. Front. Microbiol 12: 1-15. DOI: 10.3389/fmicb.2021.609459.
Liu H, Li S, Meng L, Dong L, Zhao S, Lan X, Wang J, Zheng N. 2017. Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China. J dairy Sci 100: 8796-8803. DOI: 10.3168/jds.2017-13370.
Ma F, Xu S, Tang Z, Li Z, Zhang L. 2021. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health 3(1): 32-38. DOI: 10.1016/j.bsheal.2020.09.004.
Ma Y, Zhao Y, Tang J, Tang C, Chen J, Liu J. 2018. Antimicrobial susceptibility and presence of resistance and enterotoxin/enterotoxin-likes genes in Staphylococcus aureus from food. J Food 16(1): 76-84. DOI: 10.1080/19476337.2017.1340341.
Mahmud S, Nazir K, Rahman MT. 2018. Prevalence and molecular detection of fluoroquinolone-resistant genes (qnrA and qnrS) in Escherichia coli isolated from healthy broiler chickens. Vet World 11(12): 1720-1724. DOI: 10.14202/vetworld.2018.1720-1724.
Majalija S, Tumwine G, Kiguli J, Bugeza J, Ssemadaali MA, Kazoora HB, Muwanguzi EN, Nantima N, Tuyiragize R. 2020. Pastoral community practices, microbial quality, and associated health risks of raw milk in the milk value chain of Nakasongola District, Uganda. Pastoralism 10(3): 1-11. DOI: 10.1186/s13570-020-0158-4.
Mbindyo CM, Gitao GC, Plummer PJ, Kulohoma BW, Mulei CM, Bett R. 2021. Antimicrobial resistance profiles and genes of Staphylococci isolated from mastitis cow’s milk in Kenya. Antibiotic 10(772): 1-14. DOI: 10.3390/antibiotics10070772.
McEwen SA, Collignon PJ. 2018. Antimicrobial resistance: a one health perspective. Microbiol Spectr 6(2): 1-26. DOI: 10.1128/microbiolspec.ARBA-0009-2017.
McMillan EA, Gupta SK, Williams LE, Jové T, Hiott LM, Woodley TA, Barrett JB, Jackson CR, Wasilenko JL, Simmons M, Tillman GE, McClelland M, Frye JG. 2019. Antimicrobial resistance genes, cassettes, and plasmids present in Salmonella enterica associated with United States food animals. Front Microbiol 10(832):1-18. DOI: 10.3389/fmicb.2019.00832.
Mekonnen SA, Lam TJGM, Hoekstra J, Rutten VP, Tessema TS, Broens EM, Riesebos AE, Spaninks MP, Koop G. 2018. Characterization of Staphylococcus aureus isolated from milk samples of dairy cows in smallholder farms of north-western Ethiopia. BMC Vet Res 14(246):1-8. DOI:10.1186/s12917-018-1558-1.
Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol Spectr 4(2): 1-37. DOI: 10.1128/microbiolspec.VMBF-0016-2015.
Naito M, Pawlowska TE. 2015. The role of mobile genetic elements in evolutionary longevity of heritable endobacteria. Mob Genet Elements 6(1): 1-9. DOI: 10.1080/2159256X.2015.1136375.
Ogier JC, Pagès S, Galan M, Brret M, Gaudriault. 2019. rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol 19(171): 1-16. DOI: 10.1186/s12866-019-1546-z.
Parco A, Macaluso G, Foti M, Vitale M, Fisichella V, Tolone M, Loria. 2021. Phenotypic and genotypic study on antibiotic resistance and pathogenic factors of Staphylococcus aureus isolates from small ruminant mastitis milk in South of Italy (Sicily). Italian Journal of Food Safety 10:1-6. DOI: 10.4081/ijfs.2021.9722.
Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31(4): e00088-17. DOI: 10.1128/CMR.00088-17.
Pan Y, Zeng J, Li L, Yang J, Tang Z, Xiong W, Li Y, Chen S, Zeng Z. 2020. Coexistence of antibiotic resistance genes and virulence factors deciphered by large-scale complete genome analysis. mSystems 5(3): 1-19. DOI: 10.1128/mSystems.00821-19.
Pérez VKC, da Costa GM, Sá Guimarães A, Heinemann MB, Lage AP, Dorneles EMS. 2020. Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. Journal of Global Antimicrobial Resistance 22: 792-802. DOI: 10.1016/j.jgar.2020.06.010.
Pietrocola G, Nobile G, Rindi S, Speziale P. 2017. Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front Cell Infect Microbiol 7(166): 1-15. DOI: 10.3389/fcimb.2017.00166.
Pokharel S, Shrestha P, Adhikari B. 2020. Antimicrobial use in food animals and human health: time to implement ‘one health’ approach. Antimicrob Resist Infect Control. 9(181): 1-5. DOI: 10.1186/s13756-020-00847-x.
Rahman MT, Sobur MA, Islam MS, Ievy S, Hossain MJ, El Zowalaty ME, Rahman AT, Ashour HM. 2020. Zoonotic diseases: Etiology, impact, and control. Microorganisms 8(9): 1-34. DOI: 10.3390/microorganisms8091405.
Ragbetli C, Parlak M, Bayram Y, Guducuoglu H, Ceylan N. 2016. Evaluation of antimicrobial resistance in Staphylococcus aureus isolate by years. Interdisciplinary Perspectives on Infectious Disease 2016: 1-4.
Rolo J, Worning P, Nielsen JB, Sobral R, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Westh H, Tomasz A, de Lencastre H, Miragaia M. 2017. Evidence for the evolutionary steps leading to mecA-mediated ?-lactams resistance in Staphylococci. PloS Genet 13(14): 1-22. DOI: 10.1371/journal.pgen.1006674.
Rossato AM, Reiter KC, d’Azevedo PA. 2018. Coexistence of virulence genes in methicillin-resistant Staphylococcus aureus clinical isolates. Rev Soc Bras Med Trop 51(3): 361-363. Doi: 10.1590/0037-8682-0339-2017.
Saadati M, Barati B, Doroudian M, Shirzad H, Hashemi M, Hosseini SM, Chaleshtari ARS, Bahmani MK, Hosseinzadeh S, Imani S. 2011. Detection sea, seb, sec, seq genes in Staphylococcus aureus isolated from nasal carriers in Tehran province, Iran: by multiplex PCR. JPS 2(2): 34-40.
Salasia SIO, Tato S, Sugiyono N, Ariyanti D, Prabawati. 2011. Genotyping characterization of Staphylococcus aureus isolated from bovine, human, and food in Indonesia. J Vet Sci 12(4): 353-361. DOI: 10.4142/jvs.2011.12.4.353.
Schroeder M, Brooks BD, Brooks AE. 2017. The complex relationship between virulence and antibiotic resistance. Genes 8(1): 1-23. DOI: 10.3390/genes8010039.
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. 2018. Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci 4 (237): 1-27. DOI: 10.3389/fvets.2017.00237.
Stutz K, Stephan R, Tasara T. 2011. SpA, ClfA, and FnbA genetic variations lead to Staphaurex test-negative phenotypes in bovine mastitis Staphylococcus aureus isolates. J Clin Microbiol 49(2): 638-646. DOI: 10.1128/JCM.01148-10.
Thaker HC, Brahmbhatt MN, Nayak JB. 2012. Isolation and identification of Staphylococcus aureus from milk and milk products and their drug resistance patterns in Anand, Gujarat. Vet World 6: 10–13. DOI: 10.5455/VETWORLD.2013.10-13.
Tóth AG, Csabai I, Krikó E, Tozser D, Maroti G, Patai AV, Makrai L, Szita G, Solymosi N. 2020. Antimicrobial resistance genes in raw milk for human consumption. Sci Rep 10(7464): 1-7. DOI: 10.1038/s41598-020-63675-4
Tsai SY, Chang FC, Ma K, Hsu CW, Tung PY, Hung YJ, Chou YT, Kuo CF. 2017. Systemic analysis of the mecA gene using a bioinformatics tool. Open Forum Infect Dis 4(Suppl 1): S644. DOI: 10.1093/ofid/ofx163.1713.
Tyasningsih W, Effendi MH, Budiarto, Syahputra IR. 2019. Antibiotic resistance to Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) isolated from dairy farms in Surabaya, Indonesia. Indian Vet J 96(11): 27-31.
Urmi UL, Nahar S, Rana M, Sultana F, Jahan N, Hossain B, Alam MS, Mosaddek ASM, McKimm J, Rahman NAA, Islam S, Haque M. 2020. Genotypic to phenotypic resistance discrepancies identified involving ?-Lactamase genes, blaKPC, blaIMP, blaNDM-1, and blaVIM in uropathogenic Klebsiella pneumoniae. Infect Drug Resist 13: 2863-2875. DOI: 10.2147/IDR.S262493.
Vatansever L, Sezer C, Bilge N. 2016. Carriage rate and methicillin resistance of Staphylococcus aureus in food handlers in Kars City, Turkey. SpringerPlus 5: 1-5. DOI: 10.1186/s40064-016-2278-2.
Vitale M, Galluzzo P, Buffa PG, Carlino E, Spezia O, Alduina R. 2019. Comparison of antibiotic resistance profile and biofilm production of Staphylococcus aureus isolates derived from human specimens and animal-derived samples. Antibiotics 8(97): 1-12. DOI: 10.3390/antibiotics8030097.
Wang W, Lin X, Jiang T, Peng Z, Xu J, Yi L, Li F, Fanning S, Baloch Z. 2018. Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy cows with mastitis in Beijing, China. Front Microbiol 9: 1-16. DOI: 10.3389/fmicb.2018.01123.
Wielders CL, Fluit AC, Brisse S, Verhoef J, Schmitz FJ. 2002. mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol 40(11): 3970–3975. DOI: 10.1128/JCM.40.11.3970-3975.2002.
Xu J, Shi C, Song M, Xu X, Yang P, Paoli G, Shi X. 2014. Phenotypic and genotypic antimicrobial resistance traits of foodborne Staphylococcus aureus isolates from Shanghai. Journal of food science 79(4): M635-M642. DOI: 10.1111/1750-3841.12405.
Zhao H, Xu S, Yang H, He C, Xu X, Hu F, Shu W, Gong F, Zhang C, Liu Q. 2019. Molecular typing and variations in amount of tst gene expression of TSST-1-producing clinical Staphylococcus aureus isolates. Front. Microbiol 10: 1-11. DOI: 10.3389/fmicb.2019.01388.
Yang CH, Lee SY, Pan HY, Si PW, Chuang LY. 2016. Prevalence and molecular characterization of plasmid-mediated beta-lactamase genes among nosocomial Staphylococcus aureus isolated in Taiwan. Trop J Pharm Res 16(1): 155-160. DOI: 10.4314/tjpr.v16i1.20.

Most read articles by the same author(s)