Application of Lactobacillus inoculant from various rice paddy (Oryza sativa) to total mixed ration silage microbial composition

##plugins.themes.bootstrap3.article.main##

AHMAD WAHYUDI
LISTIARI HENDRANINGSIH
SUTAWI SUTAWI
DEVI DWI SISKAWARDANI

Abstract

Abstract. Wahyudi A, Hendraningsih L, Sutawi S, Siskawardani DD. 2022. Application of Lactobacillus inoculant from various rice paddy (Oryza sativa) to total mixed ration silage microbial composition. Biodiversitas 23: xxxx. Evaluation of microorganisms profile of total mixed ration (TMR) silage inoculated with lactic acid bacteria (LAB) from local rice paddy (Oryza sativa L.) in tropical climate was analyzed to solve the feed management system. This study aimed to compare the effect of local LAB inoculants with commercial strain Lactobacillus plantarum FCC 123 on microorganisms composition of TMR silage in small-scale silage preparation. LAB was isolated from whole crop rice (w) and rice straw (s). Local rice paddy was planted in field around the University of Muhammadiyah Malang, East Java Province, Indonesia. Four rice paddy varieties: Membramo (M), Ciherang (C), Rajalele (R), and Impari (I) were utilized for isolation of LAB. Then, LAB was selected and purified in lactobacilli deMan Rogosa sharp agar (MRSA) and partially stored in dimethyl sulfoxide (DMSO) at -30°C as microbial stock. These selected LAB was used as inoculants at room temperature for 30 days TMR silage incubation. Completely randomized design (CRD) with 6 treatments (T0: TMR without fermentation, T1: TMR silage without inoculants, T2: TMR silage with L. plantarum FCC 123, T3: TMR with Local LAB Cs, T4: TMR silage with local LAB Mw, T5: TMR silage with local LAB Rs) were applied. Microorganism composition of LAB, aerobic bacteria, coliforms, clostridia, and mold was measured as experiment parameters. This research showed that LAB could be isolated and identified from all local paddy rice, both whole crop and straw. The implementation of local LAB on ensilage TMR was not significantly different from commercial L. plantarum FCC 123. Both local and commercial strains increased LAB population and suppressed harmful microbes (coliform, aerobic bacteria, and mold). The LAB isolates from local paddy rice could well act as an inoculant for TMR silage preparation in tropical climate.

##plugins.themes.bootstrap3.article.details##

References
Agarussi M.C.N.; O.G. Pereira; R.A. de Paula; V.P. da silva; J.P.S. Roseira; F.F. de Silva. 2019. Novel lactic acid bacteria strains as inoculants on alfalfa silage fermentation. Scientific reports. 9:8007 https://doi.org/10.1038/s41598-019-44520-9
Agarussi M.C.N.; O.G. Pereira; R.A. de Paula; V.P. da silva; J.P.S. Roseira; F.F. de Silva. 2019. Novel lactic acid bacteria strains as inoculants on alfalfa silage fermentation. Scientific reports. 9:8007 https://doi.org/10.1038/s41598-019-44520-9
Alhaag H.; X. Yuan; A. Mala; J. Bai; T. Shao. 2019. Fermentation Characteristics of Lactobacillus Plantarum and Pediococcus Species Isolated from Sweet Sorghum Silage and Their Application as Silage Inoculants. J. Appl. Sci. 9:1-17.
Avila C.L.S.; A.R.Valeriano; J.C. Pinto; H.C.P Figueiredo; A.V. Rezende; R.F. Schwan. 2010. Chemical and microbiological characteristics of sugar cane silages treated with microbial inoculants. Braz J Anim Sci. 39: 25–32
Ávila, C.L.S.; Pinto, J.C.; Figueiredo, H.C.P.; Schwan, R.F. 2009. Effects of an indigenous and a commercial Lactobacillus buchneri strain on quality of sugar cane silage. Grass Forage Sci. 64: 384–394.
Ávila, C.L.S. and Carvalho, B.F. 2020. Silage fermentation—updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 128: 966–984
Bernardes, T.F.; J.L.P. Daniel; A.T. Adesogan; T.A. McAllister; P. Drouin; L.G. Nussio; P. Huhtanen; G.F. Tremblay; G. Bélanger; and Y. Cai. 2017. Silage review: Unique challenges of silages made in hot and cold regions1. J. Dairy Sci. 101:4001–4019
Bjornsdottir K.; F. Breidt Jr.; and R. F. McFeeters. 2006. Protective effects of organic acids on survival of Escherichia coli O157:H7 in acidic environments. Appl. Environ. Microbiol. 72:660–664
Broberg, A.; Jacobsson, K.; Ström, K.; Schnürer, J. 2007. Metabolite pro?les of lactic acid bacteria in grass silage. Appl. Environ. Microbiol. 73: 5547–5552
Blajman, J.; Vinderola, G.; Paez, R.; Signorini, M. 2020. The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: A meta-analysis. J. Agric. Sci. 158: 1–12
C. Peng; W. Sun; X. Dong; L. Zhao; J. Hao. 2021. “Isolation, Identification and utilization of lactic acid bacteria from silage in a warm and humid climate area”. Scientific Reports.
Cai Y. 2006. Development of lactic acid bacteria inoculant for whole crop rice silage in Japan. Proceeding of satellite symposium of XIIth AAAP Animal Science Congress 2006; Busan, Korea: Asian-Australas Assoc Anim Prod Soc; pp. 85–9.
Cai Y.; Y. Benno; M. Ogawa; S. Kumai. 1999. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J. Dairy Sci. 82:520-526.
Cai Y.; Y. Benno; M. Ogawa; S. Ohmomo; S. Kumai; T. Nakase. 1998. Influent of Lactobacillus spp. from an inoculants and of Weisella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol. 64:2982-2987
Carvalho, B.F.; Sales, G.F.C.; Schwan, R.F.; Ávila, C.L.S. 2021. Criteria for lactic acid bacteria screening to enhance silage quality. J. Appl.Microbiol. 130: 341–355.
Chen Y.; S. Sela; M. Gamburg; R. Pinto; Z. G. Weinberg. 2005. Fate of Escherichia coli during ensiling of wheat and corn. Appl. Environ. Microbiol. 1:5163–5170
Kim D.; K. D. Lee; K. C. Choi. 2021. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production-An overview. Agriculture and Food 6(1):225-226.
Duan Y; Z. Tan; Y. Wang; Z. Li; G. Qin; Y. Huo; Y. Cai. 2008. Identification and characterization of lactic acid bacteria isolated from Tibetian Qula cheese. J. Gen. Appl. Microbiol. 54:41-60
Duniere L.; A. Gleizal; F. Chaucheyras-Durand; I. Chevallier; D. Thevenot-Sergentet. 2011. Fate of Escherichia coli O26 in corn silage experimentally contaminated at ensiling, at opening or after aerobic exposure and protective effect of various bacterial inoculants. Appl. Environ. Microbiol. 77:8696–8704
Santos, E. M.; C. d. Silva,; C. H. O. Macedo; F. Sena. 2013. Lactic Acid Bacteria in Tropical Grass Silages, Health and Livestock Purposes.
Zhang, F ; X. Wang; W. Lu; F. Li; C. Ma. 2019. Improved Quality of Corn Silage When Combining Cellulose Decomposing Bacteria and Lactobacillus buchneri during Silage Fermentation. Biomed Research International, pp. 1-3.
Fabiszewska A.U.; K.J. Zieli?ska; B. Wróbel. 2019. Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview. World journal of microbiology & biotechnology, 35(5):76. doi:10.1007/s11274-019-2649-2
Gotlieb, A. 2016. Mycotoxins in silage: A silent loss in profits. https:// www .uvm .edu/ pss/ vtcrops/ articles/Mycotoxins .html.
Guan, H.; Ke, W.; Yan, Y.; Shuai, Y.; Li, X.; Ran, Q.; Yang, Z.; Wang, X.; Cai, Y.; Zhang, X. 2020. Screening of natural lactic acid bacteria with potential effect on silage fermentation, aerobic stability and a?atoxin B1 in hot and humid area. J. Appl. Microbiol. 128: 1301–1311
Hu Z.; J. Chang; J. Yu; S. Li; H. Niu. 2018. Diversity of bacterial community during ensiling and subsequent exposure to air in whole-plant maize silage. Asian Australas. J Anim Sci.Vol. 31(9):1464-1473. https://doi.org/10.5713/ajas.17.0860.
Ellis, J; I. K. Hindrichsen; G. Klop; R. D. Kinley; N. Milora; A. Bannink; J. Dijkstra. 2016. “Effects of lactic acids bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle”, Journal of Dairy Science.
Ni., K; Y. Wang; D. Li; Y. Cai; H. Pang. 2015. Characterization, Identification and Application of Lactic Acid Bacteria Isolated from Forage Paddy Rice Silage. Plos One, p. 2.
Weiss, K.; B. Kroschewski; H. Auerbach. 2016. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage," Journal of Dairy Science, pp. 8053-8069.
Korosteleva S.N.; T.K. Smith; H. J. Boermans. 2009. Effects of feed naturally contaminated with Fusarium mycotoxins on metabolism and immunity of dairy cows. J. Dairy Sci. 92:1585–1593.
Kristensen, N.; B., K.H Sloth; O. Højberg; N.H. Spliid; C. Jensen; R. Thøgersen. 2010. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. J. Dairy Sci.93:3764–3774 (2010). doi: 10.3168/jds.2010-3136.
Kung L.; R.J. Grant; R.J. Schmidt. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science. Volume 101, Issue 5, May, pp. 4020-4033.
Puntillo, M.; M. Gaggiotti, J.; M. Oteiza; A. Binetti; A. Massera; G. Vinderola. 2020. Potential of Lactic Acid Bacteria Isolated From Different Forages as silage Inoculants for Improving Fermentation Quality and Aerobic Stability. Front. Microbiol.
Martin N. H.; A. Trm?i?; T.H. Hsieh; K.J. Boor; M. Wiedmann. 2016. The Evolving Role of Coliforms As Indicators of Unhygienic Processing Conditions in Dairy Foods. Frontiers in microbiology, 7:1549. doi:10.3389/fmicb.2016.01549.
Muck, R. E.; 2010. Silage microbiology and its control through additives. Rev. Bras. Zootec. 39:182–191.
Muck, R. E.; E. M. G. Nadeau; T. A. McAllister; F. E. Contreras-Govea; M. C. Santos; L. Kung Jr.; 2018. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101:3980–4000 https://doi.org/10.3168/jds.2017-13839
Muck, R. E.; E. M. G. Nadeau; T. A. McAllister; F. E. Contreras-Govea; M. C. Santos; L. Kung Jr. 2018. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101:3980–4000 https://doi.org/10.3168/jds.2017-13839
Huyen, N.T.; I. Martinez; W. Pellikaan. 2020. Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows. agronomy, pp. 1-2.
Ni K.; Y. Wang; D. Li; Y. Cai; H. Pang. 2015. Characterization, Identification and Application of Lactic Acid Bacteria Isolated from Forage Paddy Rice Silage. PLoS ONE 10(3): e0121967. doi:10.1371/
O’Brien, M.; Nielsen, K.F.; O’Kiely, P.; Forristal, P.D.; Fuller, H.T.; Frisvad, J.C. 2006. Mycotoxins and Other Secondary Metabolites Produced in Vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom Isolated from Baled Grass Silage in Ireland. J.Agric. Food Chem. 54: 9268–9276
Ohmomo S.; O.Tanaka; H.K. Kitamoto; Y. Cai. 2002. Silage and microbial performance, Old story but new problems. JARG. 36 (2): 59-71
Oke, Sunday Ayoola. 2004. On The Environmental Pollution Problem: A Review. J. Environ. Eng. Landsc. 12(3):108-113
Oliveira, A.; S., Z. G. Weinberg; I.M. Ogunade; A.A.P. Cervantes; K.G. Arriola; Y. Jiang; D. Kim, X. Li; M.C.M. Gonçalves; D. Vyas, A.T. Adesogan. 2017. Meta- analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 100(6):4587–4603. doi: 10.3168/jds.2016-11815.
Pahlow G.; R.E. Muck; F. Driehuis. 2003. Microbiology of ensiling. In: D.R. Buxton, R.E. MUCK, J.H. Harrison. (Eds.) Silage science and technology. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America,. p.31-93.
Queiroz O.C.M.; I. M. Ogunade; Z. Weinberg; and A. T. Adesogan. 2018. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 101:4132–4142 https://doi.org/10.3168/jds.2017-13901
Pinto, S.; J. F. G. Warth; C. O. Novinski; P. Schmidt. 2020. Effects of natamycin and Lactobacillus Buchneri on the fermentative process and aerobic stability of maize silage," Journal of Animal and Feed Sciences, pp. 82-83
Reich, L.J.; Kung, L. 2010. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Technol. 159: 105–109
Santos O.; C.L.S. Ávila; and R.F. Schwan. 2013. Selection of tropical lactic acid bacteria for enhancing the quality of maize silage. J. Dairy Sci. 96:7777–7789 http://dx.doi.org/ 10.3168/jds.2013-6782
Santos, A.O.; Ávila, C.L.; Pinto, J.C.; Carvalho, B.F.; Dias, D.R.; Schwan, R.F. 2016. Fermentative pro?le and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. J. Appl. Microbiol. 120: 266–279.
Scientific Opinion of the Panel on Biological Hazards on a request from the Health and Consumer Protection, Directorate General, European Commission. 2008. Microbiological risk assessment in feedingstuffs for food-producing animals. The EFSA Journal. 720: 1-84
Soundharrajan, I.; Kim, D.H.; Srisesharam, S.; Kuppusamy, P.; Park, H.S.; Yoon, Y.H.; Kim, W.H.; Song, Y.G.; Choi, K.C. 2017. Application of customised bacterial inoculants for grass haylage production and its effectiveness on nutrient composition and fermentation quality of haylage. 3 Biotech. 7: 321
Soundharrajan, I.; Park,H.S.; Rengasamy, S.; Sivanesan, R.;Choi, K.C. 2021. Application and Future Prospective of Lactic Acid Bacteria as Natural Additives for Silage Production—A Review. Appl. Sci.11:1-15 https://doi.org/10.3390/app11178127
Ström, K.; Sjögren, J.; Broberg, A.; Schnürer, J. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 68: 4322–4327.
Wahyudi A, D.; Pamungkas, R. H.; Setyobudi, L. Hendraningsih; Z. Vincevica-Gaile. 2017. Organic Acid and Nutrient Composition of Lactic Acid Bacteria Inoculated Total Mixed Ration Silage under TropicalCondition. Proceeding of the Pakistan Academy and Environmental Sciences: B. Life and Enviromnental Sciences 54(1): 41-45.
Wambacq, E.; Vanhoutte, I.; Audenaert, K.; De Gelder, L.; Haesaert, G. 2016. Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: A review. J. Sci. Food Agric. 96: 2284–2302
Weinberg Z.G.; G. Ashbell; Y. Hen; A. Azrieli; G. Szakacs; I. Filya. 2002. Ensiling whole-crop wheat and corn in large containers with Lactobacillus plantarum and Lactobacillusbuchneri. J. Ind. Microbiol. Biotechnol. Vol. 28:7-11
Weiss, K.; Kroschewski, B.; Auerbach, H. 2016. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. of Dairy Sci. vol. 99 (10), 2016, p. 8053–8069. http://dx.doi.org/10.3168/jds.2015-10323
Wojdat, E. 2006. Occurrence and characterization of some Clostridium species isolated from animal feedingstuffs. Bulletin of the Veterinary Institute in Pulawy. 50 (1): 63-67.
Yang J.; H. Tan; Y. Cai. 2016. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues. J. Dairy Sci. 99:5325–5334. http://dx.doi.org/10.3168/jds.2016-10952
Yang J.; Y. Cao; Y. Cai; F. Terada. 2010. Natural population of lactic acid bacteria isolated from vegetable residues and silage fermentation. J. Dairy Sci. 93:3136-3145
Yitbarek M.B; B.Tamir. 2014 Silage Additives: Review. Open Journal of Applied Sciences. 4: 258-274. http://dx.doi.org/10.4236/ojapps.2014.45026
Zhao, J.; Z. Dong; J. Li; L. Chen; Y. Bai; Y. Jia; T. Shao. 2019. Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage. Asian-Australasian journal of animal sciences, 32(6):783–791. doi:10.5713/ajas.18.0543