Development of a protected birds identification system using a convolutional neural network

##plugins.themes.bootstrap3.article.main##

IRMAN HERMADI
WULANDARI
DHANA DHIRA

Abstract

Abstract. Hermadi I, Wulandari, Dhira D. 2022. Development of a protected birds identification system using a convolutional neural network. Biodiversitas 23: 2561-2569. The protected animals are the animals having small populations, a sharp decline in the number of individuals in the wild, or endemic. The government has banned owning, keeping, or trading these animals. The first step in conserving these animals is identification. The government of the Republic of Indonesia has defined 564 species of bird as protected. This issue becomes a challenge to bird species identification. This study aims to develop a web application that implements a convolutional neural network (CNN) model for image-based protected bird species identification. This study uses the images of ten protected bird species in Indonesia as the research subject. This study consists of the stages viz. data collection, data preprocessing, data splitting, CNN model development, model evaluation, and web development using the Prototyping method. This study has successfully developed a model that gained 97% accuracy, 98% precision, and 97% recall on testing data. The study utilized HTML, CSS, Javascript, and Tensorflow.js for Web development. The black-box testing result shows that the prototype is acceptable.

##plugins.themes.bootstrap3.article.details##

References
Alzubaidi L, Zhang J, Humaidi AJ, Al Dujaili A, Duan Y, Al Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. 2021. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J Big Data 8: 53. DOI: 10.1186/s40537-021-00444-8.
Biswas AA, Rahman Md. M, Rajbongshi A, Majumder A. 2021. Recognition of Local Birds using Different CNN Architectures with Transfer Learning. In: International Conference on Computer Communication and Informatics (ICCCI), 27-29 January 2021, Coimbatore, India. DOI: 10.1109/ICCCI50826.2021.9402686.
Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning. Cambridge (MA): MIT Press.
Harjoseputro Y, Yuda IP, Danukusumo KP. 2020. MobileNets: Efficient convolutional neural network for identification of protected birds. Intl J Adv Sci Eng Inf Technol 6: 2290-2296. DOI: 10.18517/ijaseit.10.6.10948.
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. Computing Research Repository (CoRR). arXiv. DOI: 10.48550/arXiv.1704.04861
Huang YP, Basanta H. 2019. Bird image retrieval and recognition using a deep learning platform. IEEE Access 7: 66980-66989. DOI: 10.1109/ACCESS.2019.2918274.
Nwankpa C, Ijomah W, Gachagan A, Marshall S. 2018. Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. Computing Research Repository (CoRR). DOI: 10.48550/arXiv.1811.03378
Pandey H, Kumar S, Singh VK, Ahmad W. 2018. Comparison of usage of crowdsourcing in traditional and agile software development methodologies on the basis of effectiveness. Intl J Comput Eng Technol 9: 271-284.
Prechelt L. 1998. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw 11: 761-767. DOI: 10.1016/S0893-6080(98)00010-0.
Pressman RS, Maxim BR. 2015. Software Engineering: A Practitioner's Approach-8th ed. McGraw-Hill, New York.
Putra DWT, Andriani R. 2019. Unified Modelling Language (UML) dalam Perancangan Sistem Informasi Permohonan Pembayaran Restitusi SPPD. J Teknoif 7: 32-39. DOI: 10.21063/jtif.2019.V7.1.32-39.
Salmi N, Rustam Z. 2019. Naïve bayes classifier models for predicting the colon cancer. IOP Conf Ser Mater Sci Eng 546: 052068. DOI: 10.1088/1757-899X/546/5/052068.
Sammut C, Webb GI. 2017. Accuracy. In: Sammut C, Webb GI (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. DOI: 10.1007/978-1-4899-7687-1_3.
Sandler M, Howard A, Zhu ML, Zhmoginov A, Chen LC. 2018. MobileNetV2: Inverted Residuals and Linear bottlenecks. Computing Research Repository (CoRR). arXiv: DOI: 10.1109/CVPR.2018.00474.
Smilkov D, Thorat N, Assogba Y, Yuan A, Kreeger N, Yu P, Zhang K, Cai S, Nielsen E, Soergel D, Bileschi S, Terry M, Nicholson C, Gupta SN, Sirajuddin S, Sculley D, Monga R, Corrado G, Viégas FB, Wattenberg M. 2019. TensorFlow.js: Machine Learning for the Web and Beyond. Computing Research Repository (CoRR). arXiv: DOI: 10.48550/arxiv.1901.05350
Ting KM. 2017. Confusion matrix. In: Sammut C, Webb GI (eds). Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. DOI: 10.1007/978-1-4899-7687-1_50.
Wibawa DY. 2018. Development of Front-End Module for E-Commerce in Digital Tani Mobile Application [Thesis]. Institut Pertanian Bogor, Bogor. [Indonesian].
World Bank Group. 2018. Tools and Resources to Combat Illegal Wildlife Trade. World Bank, Washington DC (WA). Retrieved from https://openknowledge.worldbank.org/handle/10986/29542, accessed on 16.03.2022
Yamashita R, Nishio M, Do RKG, Togashi K. 2018. Convolutional neural networks: An overview and application in radiology. Insights into Imaging 9: 611-629. DOI: 10.1007/s13244-018-0639-9.
Ying X. 2019. An Overview of Overfitting and its Solutions. J Phys Conf Ser 1168 (2): 022022. DOI: 10.1088/1742-6596/1168/2/022022.
Zhang A, Lipton ZC, Li M, Smola AJ. 2020. Dive into Deep Learning. https://d2l.ai