Tolerance response of varied tomato genotypes grown at excess manganese (Mn)

##plugins.themes.bootstrap3.article.main##

SITI ZAHARA
NONO CARSONO
https://orcid.org/0000-0002-1813-3149
RIJA SUDIRJA
MOCHAMAD ARIEF SOLEH SOLEH

Abstract

Abstract. Zahara S, Carsono N, Sudirja R, Soleh MA. 2022. Tolerance response of varied tomato genotypes grown at excess manganese (Mn). Biodiversitas 23: 3209-3218. High Mn concentration in acidic soil has been known as a limiting factor of sustainable tomato production. In addition, the number of tomato cultivars available to be grown under such conditions is still limited. Therefore, this study tested the Mn tolerance response among four tomato genotypes, Opal, Mutiara, Ratna, and Mirah, grown hydroponically. Nutrient solutions were added to Mn for concentrations of 0, 50, 100, and 200 ppm. The increase of Mn concentration ([Mn]) significantly decreased chlorophyll fluorescence and stomatal conductance. Shoot Tolerance Index (STI) and Root Tolerance Index (RTI) among genotypes were significant differences in response to Mn concentration. Genotype Mirah was the lowest Mn accumulation in the shoot and root compared to other genotypes. Most of the Mn absorbed by Mirah was accumulated in the roots. The tolerance ranks of the tomato genotype tested for Mn toxicity were Mirah > Opal > Ratna > Mutiara. This indicates that genetic composition plays an essential role in Mn tolerance. The tolerance response of Mirah was due to its ability to prevent Mn from being absorbed by the shoot, which led to the effect of shoot toxicity. This response might help improve tomato genotypes tolerance under high Mn soil.

##plugins.themes.bootstrap3.article.details##

References
Akinci IE, Akinci S, Yilmaz K. 2010. Manganese toxicity on manganese accumulation and mineral composition of tomato (Solanum lycopersicum L.). Asian J Chem 22(9): 6991-6997. ISSN: 0970-7077.
Benac R. 1976. Response of a sensitive (Arachis hypogaea) and a tolerance (Zea mays) species to different concentrations of manganese in the environment. Can ORSTOM Ser 11(1): 43-51.
Brown JC, Devine TE. 1980. Inheritance of tolerance or resistance to manganese toxicity in soybeans. Agron. J 72: 898-904. DOI: 10.2134/agronj1980.00021962007200060009x.
Burke DG, Watkins L, Scott BJ. 1990. The effect of manganese toxicity on visible symptoms, yield, manganese levels, and organic acid levels intolerant and sensitive wheat cultivars. Crop Sci 30: 275-280. DOI: 10.2135/cropsci1990.0011183X003000020007x.
Chatzistathis TA, Papadakis IE, Therios IN, Giannakoula A, Dimassi K. 2010. Is the chlorophyll fluorescence technique a useful tool to assess manganese deficiency and toxicity stress in olive plants? J Plant Nutr 34(1): 98-114. DOI: 10.1080/01904167.2011.531362.
Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, Kato S, Maeshima M, Ma JF, Ueno D. 2013. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp Bot 64(14): 4375-4387. DOI: 10.1093/jxb/ert243.
Edwards DG, Asher CJ. 1982. Tolerance of crop and pasture species to manganese toxicity. Proceedings of the Ninth Plant Nutrition Colloquium. Commonwealth Agricultural Bureaux. Commonwealth Agricultural Bureau, Farnham Royal, Bucks, UK. Warwick. [England]
El–Jaoual T, Cox DA. 1998. Manganese toxicity in plants. J Plant Nutr 21(2): 353–386. DOI: 10.1080/01904169809365409.
Fernando DR, Lynch JP. 2015. Manganese phytotoxicity: new light on an old problem. Ann Bot-London 116(3): 313-319. DOI: 10.1093/aob/mcv111.
Foy CD. 1973. Manganese and plants. In: Lieben J (eds) Manganese. Nat Acad Sci Nat Research Council, Washington DC:
Foy CD, Scott BJ, Fisher JA. 1988. Genetic differences in plant tolerance to manganese toxicity. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in Soils and Plants. Kluwer Academic Publishers, Dordrecht, Netherlands.
Foy CD, Chaney RL, White MC. 1978. The physiology of metal toxicity in plants. Ann Rev Plant Physio 29: 511-566. DOI: 10.1146/annurev.pp.29.060178.002455.
Gallagher PA. 1972. Potassium nutrition of tomatoes, Proceedings of Provisional Glasshouse Conference. Dublin. [England].
Gong J, Li D, Li H, Zhou H, Xu J. 2019. Identification of manganese-responsive microRNAs in Arabidopsis by small RNA sequencing. Czech J Genet Plant 55(2): 76-82. DOI: 10.17221/57/2018-CJGPB.
Hajiboland R, Hasan BD. 2007. Effect of Cu and Mn toxicity on chlorophyll fluorescence and gas exchange in rice and sunflower under different light intensities. J Stress Physiol Biochem 3(1): 4-17. DOI: 10.0000/cyberleninka.ru/article/n/effect-of-cu-and-mn-toxicity-on-chlorophyll-fluorescence-and-gas-exchange-in-rice-and-sunflower-under-different-light-intensities.
Hartemink AE, Bourke RM. 2000. Nutrient deficiencies of agricultural crops in Papua New Guinea. Outlook Agr 29(2): 97-108. DOI: 10.5367/000000000101293103.
Hebbern CA, Pedas PJK, Schjoerring L, Knudsen, Husted S. 2005. Genotypic differences in manganese efficiency: Field experiments with winter barley (Hordeum vulgare L.). Plant Soil 272: 233-244. DOI: 10.1007/s11104-004-5048-9.
Henriques FS. 2003. Gas exchange, chlorophyll fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Sci 165(1): 239-244. DOI: 10.1016/S0168-9452(03)00163-8.
Henriques FS. 2004. Reduction in chloroplast number accounts for the decrease in the photosynthetic capacity of Mn-deficient pecan leaves. Plant Sci 166(4): 1051-1055. DOI: 10.1016/j.plantsci.2003.12.022.
Horiguchi T. 1987. Mechanism of manganese toxicity and tolerance of plants. II. Deposition of oxidized manganese in plant tissues. Soil Sci Plant Nutr 33(4): 595-606. DOI: 10.1080/00380768.1987.10557608.
Horst WJ, Fecht M, Naumann A, Wissemeier AH, Maier P. 1999. Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J Plant Nutr Soil Sci 162(3): 263-274. DOI: 10.1002/(SICI)1522-2624(199906)162:3<263::AID-JPLN263>3.0.CO;2-A.
Kitajima M, Butler WL. 1975. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplast by dibromo thymoquinone. Biochim Biophys Acta, 376(1): 105-115. DOI: 10.1016/0005-2728(75)90209-1.
Kleiber T. 2014. Effect of manganese on nutrient content in tomato (Lycopersicon esculentum Mill.) leaves. J Elem 20(1):115-126. DOI:10.5601/jelem.2014.19.2.580.
Kleiber T, Grajek M. 2015. Tomato reaction on excessive manganese nutrition. Bulg. J Agric Sci 21(1): 118-125.
Le Bot J, Kirkby EA, van Beusichem Ml. 1990. Manganese toxicity in tomato plants: effect on cation uptake and distribution. J Plant Nutr 13(5): 513-525. DOI: 10.1080/01904169009364096.
Lee TJ, Luitel BP, Kang WH. 2011. Growth and physiological response to manganese toxicity in Chinese Cabbage (Brassica rapa L. ssp. campestris). Hortic Environ Biotech 52(3): 252-258. DOI: 10.1007/s13580-011-0224-3.
Li J, Wang Z, Jia Y, Dong R, Huang R, Liu P, Li X, Liu G, Chen Z. 2019. Advances in the mechanisms of plant tolerance to manganese toxicity. Int J Mol Sci 20(20): 5096. DOI: 10.3390/ijms20205096.
Loneragan JF. 1988. Distribution and movement of manganese in plants. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in Soils and Plants. Kluwer Academic Publishers, Dordrecht, Netherlands.
Millaleo R, Reyes-Diaz M, Ivanov AG, Mora M, Alberdi M. 2010. Manganese is an essential and toxic element for plants: transport, accumulation, and resistance mechanism. J Soil Sci Plant Nut 10(4): 476-494. DOI: 10.4067/s0718-95162010000200008.
Morris HD, Pierre WH. 1948. The effect of calcium, phosphorus, and iron on the tolerance of lespedeza to manganese toxicity in culture solutions. Soil Sci Soc Am J, 12: 382-386. DOI: 10.2136/sssaj1948.036159950012000C0088x.
Mousavi SR, Shahsavari M, Rezaei M. 2011. A general overview on manganese (Mn) importance for crops production. Aust J Appl Sci 5(9): 1799-1803. URL: http://www.insipub.com/ajbas/2011/Sep.
Pradeep K, Bell RW, Vance W. 2020. Variation of Cicer germplasm to manganese toxicity tolerance. Front Plant Sci 11. DOI: 10.3389/fpls.2020.588065.
Robson RD, Loneragan JF. 1970. Sensitivity of annual Medicago species to Mn toxicity as affected by calcium and pH. Aust J Agr Res 21(2): 223 - 232. DOI: 10.1071/AR9700223.
Rout GR, Samantaray S, Das P. 2001. Studies on differential manganese tolerance of mung bean and rice genotypes in hydroponic culture. Agronomie 21(8): 725-733. DOI: 10.1051/agro:2001166.
Santos EF, Santini JMK, Paixão AP, Júnior EF, Lavres J, Campos M, Reis ARD. 2017. Physiological highlights of manganese toxicity 1 symptoms in soybean plants: Mn toxicity responses. Plant Physiol Bioch 113: 6-19. DOI: 10.1016/j.plaphy.2017.01.022.
Soleh MA, Ariyanti M, Dewi LR, Kadapi M, 2018. Chlorophyll fluorescence and stomatal conductance of ten sugar varieties under waterlogging and fluctuation light intensity. Emir J Food Agr 30(11): 935-940. DOI: 10.9755/ejfa.2018.v30.i11.1844.
Stoyanova Z, Poschenrieder C, Tzvetkova N, Doncheva S. 2009. Characterization of the tolerance to excess manganese in four maize varieties. Soil Sci Plant Nutr 55(6): 747-753. DOI: 10.1111/j.1747-0765.2009.00416.x.
Suresh R, Foy CD, Weidner JR. 1987. Effect of excess soil manganese on stomatal function in two soybean cultivars. J Plant Nutr 10(7): 749-760. DOI: 10.1080/01904168709363606
Taylor GJ, Foy CD. 1985. Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat). III. Long-term pH changes induced in nutrient solutions by winter cultivars differing in tolerance to aluminum. J Plant Nutr 8(7): 613-628. DOI; 10.1080/01904168509363372.
Wong MH, Bradshaw AD. 1982. A comparison of the toxicity of heavy metals using root elongation of ryegrass, Lolium perenne. New Phytol 9(2): 255-261. DOI: 10.1111/j.14698137.1982.tb03310.x.
Yeo AR. 1994. Physiological criteria in screening and breeding. In: Yeo AR, Flowers TJ (eds) Monographs on Theoretical and Applied Genetics Vol 21. Springer, Verlag Berlin Heidelberg.
Yost RS. 2000. Plant tolerance of low soil pH, soil aluminum, and soil manganese. In: Silva JA, Uchida R (eds) Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture. College of Tropical Agriculture and Human Resources, The University of Hawaii at Manoa.
Zhao J, Wang W, Zhou H, Wang R, Zhang P, Wang H, Pan X, Xu J. 2017. Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in Arabidopsis. Front Plant Sci 8: 272. DOI: 10.3389/fpls.2017.00272.

Most read articles by the same author(s)