Characteristic of the material deposits, microclimate profile, epiphyte abundance, and bacteria populations in the above-ground ecosystem of oil palm

##plugins.themes.bootstrap3.article.main##

IPUT PRADIKO
RANA FARRASATI
SUROSO RAHUTOMO
FADILLA SAPALINA
RIZKI DESIKA PUTRI PANE
FANDI HIDAYAT
EKO NOVIANDI GINTING

Abstract

Abstract. Pradiko I, Farrasati R, Rahutomo S, Sapalina F, Pane RDP, Hidayat F, Ginting EN. 2022. The physical, chemical, and biological characteristics of microhabitats inside oil palm trunk axils in North Sumatra, Indonesia. Biodiversitas 23: 3793-3807. Above-ground ecosystems (AGE) components in oil palm plantations consist of epiphytic plants and fauna in microhabitat within the axil of pruned fronds. This research aimed to identify the characteristics of microhabitat, including microclimate profile, physical and chemical properties of the material deposit, epiphyte abundance, and microbe population. The study sites were located in the eastern and western regions of North Sumatra. Furthermore, vertical observations were taken on oil palm trunks at the height of 20, 100, 150, 200, and 300 cm. The study indicated that the microclimate, nutrients content, physical properties of the material deposit, and bacterial populations in the trunk axils of oil palm in the eastern differed from the western region. There was no obvious pattern in the microclimate profile for individual oil palms. However, there was a change in N, C-organic, and C/N ratios with the increasing height of microhabitat sites. In terms of abundance, Nephrolepis bisserata and Vittaria ensiformis epiphytes were more dominant in the upper and bottom trunk, respectively. The microhabitat at the bottom trunk had a denser bacterial population, negatively correlated with N, C-organic, C/N ratio, Mg, and pH.

##plugins.themes.bootstrap3.article.details##

References
Allen MR, Shine KP, Fuglestvedt JS, Millar RJ, Cain M, Frame DJ, Macey AH. 2018. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Climate and Atmospheric Science 1(1): 1–8. DOI: 10.1038/s41612-018-0026-8.
Allison SD, Treseder KK. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 14(12): 2898–2909. DOI: 10.1111/j.1365-2486.2008.01716.x.
Ariyanti M, Yahya S, Murtilaksono K, Suwarto, Siregar HH. 2015. Study of the growth of Nephrolepis biserrata Kuntze and its utilization as cover crop under mature oil palm plantation. International Journal of Sciences: Basic and Applied Research, 19(1): 325–333.
Ashton-Butt A, Aryawan AAK, Hood ASC, Naim M, Purnomo D, Suhardi et al. 2018. Understory vegetation in oil palm plantations benefits soil biodiversity and decomposition rates. Frontiers in Forests and Global Change, 1(10): 1–13. DOI: 10.3389/ffgc.2018.00010.
Banerjee S, Helgason B, Wang L, Winsley T, Ferrari BC, Siciliano SD. 2015. Legacy effects of soil moisture on microbial community structure and N2O emissions. Soil Biology and Biochemistry, 95: 1–11. DOI: 10.1016/j.soilbio.2015.12.004.
Bardgett RD, van Der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. Nature, 515(7528): 505–511. DOI: 10.1038/nature13855.
Barnes AD, Jochum M, Mumme S, Haneda NF, Farajallah A, Widarto TH, and Brose U. 2014. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications, 5(1): 1–7. DOI: 10.1038/ncomms6351.
Brödlin D, Kaiser K, Hagedorn F. 2019. Divergent patterns of carbon, nitrogen, and phosphorus mobilization in forest soils. Frontiers in Forests and Global Change, 2(66): 1–16. DOI: 10.3389/ffgc.2019.00066.
Broz A, Retallack GJ, Maxwell TM, Silva LCR. 2021. A record of vapour pressure deficit preserved in wood and soil across biomes. Scientific Reports, 11(1): 1–12. DOI: 10.1038/s41598-020-80006-9.
Brust GE. 2019. Management strategies for organic vegetable fertility. In: Biswas D, Micallef SA (eds). Safety and Practice for Organic Food. Academic Press, Massachusetts.
Cardelús CL, Mack MC. 2010. The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecology, 207(1): 25–37. DOI: 10.1007/s11258-009-9651-y.
Damodaran T, Sah V, Rai RB, Sharma DK, Mishra VK, Jha SK, Kannan R. 2013. Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. African Journal of Microbiology Research, 7(44): 5082–5089. DOI: 10.5897/AJMR2013.6003.
de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J. 2006. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 38(8): 2092–2103. DOI: 10.1016/j.soilbio.2006.01.008.
Dennis PG, Newsham KK, Rushton SP, O’Donnell AG, Hopkins DW. 2019. Soil bacterial diversity is positively associated with air temperature in the maritime Antarctic. Scientific Reports, 9(1), 1–11: DOI: 10.1038/s41598-019-39521-7.
Eskov AK, Zverev AO, Abakumov EV. 2021. Microbiomes in suspended soils of vascular epiphytes differ from terrestrial soil microbiomes and from each other. Microorganisms, 9(5), 1–13: DOI: 10.3390/microorganisms9051033.
Farrasati R, Pradiko I, Rahutomo S, Sutarta ES, Santoso H, Hidayat F. 2019. C-organik tanah di perkebunan kelapa sawit sumatera utara: status dan hubungan dengan beberapa sifat kimia tanah. Jurnal Tanah Dan Iklim, 43(2): 157–165. DOI: 10.21082/jti.v43n2.2019.157-165.
Ganser D, Denmead LH, Clough Y, Buchori D, Tscharntke T. 2017. Local and landscape drivers of arthropod diversity and decomposition processes in oil palm leaf axils. Agricultural and Forest Entomology, 19(1): 60–69. DOI: 10.1111/afe.12181.
Gao L, Sun MH, Liu XZ, Che YS. 2007. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycological Research, 111(1): 87–92. DOI: 10.1016/j.mycres.2006.07.019.
Global Biodiversity Information Facility. 2021. GBIF Home Page. https://www.gbif.org.
Harmida AN, Tanzerina N. 2018. Diversity of epiphytic fern on the oil palm plants (Elaeis guineensis Jacq.) in campus of Sriwijaya University Indralaya. Biovalentia, 4(2): 33–36. DOI: 10.24233/BIOV.4.2.2018.106.
Hietz P, Wanek W, Popp M. 1999. Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant, Cell and Environment, 22(1999): 1435–1443. DOI: 10.1046/J.1365-3040.1999.00502.X.
Högberg MN, Högberg P, Myrold DD. 2007. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 150(4): 590–601. DOI: 10.1007/s00442-006-0562-5.
Howell J. 2005. Organic matter: key to soil management. http://www.hort.uconn.edu/ipm/veg/croptalk/croptalk1_4/.
Jílková V, Straková P, Frouz J. 2020. Foliage C:N ratio, stage of organic matter decomposition and interaction with soil affect microbial respiration and its response to C and N addition more than C:N changes during decomposition. Applied Soil Ecology, 152(2020): 1–10. DOI: 10.1016/j.apsoil.2020.103568.
Jin Q, Kirk MF. 2018. pH as a primary control in environmental microbiology: 1. thermodynamic perspective. Frontiers in Environmental Science, 6(21): 1–15. DOI: 10.3389/fenvs.2018.00021.
June T, Meijide A, Stiegler C, Kusuma AP, Knohl A. 2018. The influence of surface roughness and turbulence on heat fluxes from an oil palm plantation in Jambi, Indonesia. IOP Conference Series: Earth and Environmental Science, 149(1): 1–11. DOI: 10.1088/1755-1315/149/1/012048.
Koorem K, Gazol A, Öpik M, Moora M, Saks Ü et al. 2014. Soil nutrient content influences the abundance of soil microbes but not plant biomass at the small-scale. Plos One, 9(3): 1–9. DOI: 10.1371/journal.pone.0091998.
Leite MFA, Pan Y, Bloem J, Berge HT, Kuramae EE. 2017. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank. Scientific Reports, 7(1): 1–11. DOI: 10.1038/srep42634.
Lindo Z, Winchester NN. 2007. Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western redcedar forests, Vancouver Island, Canada. Soil Biology and Biochemistry, 39(2007): 2957–2966. DOI: 10.1016/j.soilbio.2007.06.009.
Luke SH, Advento AD, Aryawan AAK, et al. 2020. Managing oil palm plantations more sustainably: large-scale experiments within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme. Frontiers in Forests and Global Change, 2(75): 1–20. DOI: 10.3389/ffgc.2019.00075.
Luke SH, Purnomo D, Advento AD, Aryawan AAK et al. 2019. Effects of understory vegetation management on plant communities in oil palm plantations in Sumatra, Indonesia. Frontiers in Forests and Global Change, 2(33): 1–13. DOI: 10.3389/ffgc.2019.00033.
Luskin MS, and Potts MD. 2011. Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic and Applied Ecology, 12(6): 540–551. DOI: 10.1016/j.baae.2011.06.004.
Lwanga JS, Balmford A, Badaza R. 1998. Assessing fern diversity: Relative species richness and its environmental correlates in Uganda. Biodiversity and Conservation, 7(11): 1387–1398. DOI: 10.1023/A:1008865518378.
Meijide A, Röll A, Fan Y, Herbst M, Niu F, Tiedemann F et al. 2017. Controls of water and energy fluxes in oil palm plantations: Environmental variables and oil palm age. Agricultural and Forest Meteorology, 239(2017): 71–85. DOI: 10.1016/j.agrformet.2017.02.034.
Mildaryani W, Wiraatmaja M, Dewi WS, Poernomo D. 2019. Chemical characteristics of material deposit in axil part of oil palm. IOP Conference Series: Earth and Environmental Science, 365(1): 1–8. DOI: 10.1088/1755-1315/365/1/012028.
Murray FW. 1967. On the computation of saturation vapor pressure. Journal of Applied Meteorology 6: 203–204. DOI: 10.1175/1520-0450(1967)006<0203:otcosv>2.0.co;2.
Nájera A, Simonetti JA. 2010. Enhancing avifauna in commercial plantations: Research note. Conservation Biology, 24(1): 319–324. DOI: 10.1111/j.1523-1739.2009.01350.x.
Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. 2017. Landmark Papers Microbial diversity and soil functions. European Journal of Soil Science, 68(1): 12–26. DOI: 10.1111/ejss.4_12398.
Nottingham AT, Bååth E, Reischke S, Salinas N, Meir P. 2019. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Global Change Biology, 25(3): 827–838. DOI: 10.1111/gcb.14502.
Nottingham AT, Whitaker J, Turner BL, Salinas N, Zimmermann M, Malhi Y, Meir P. 2015. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience, 65(9): 906–921. DOI: 10.1093/biosci/biv109.
Nurdiansyah F, Denmead LH, Clough Y, Wiegand K, Tscharntke T. 2016. Biological control in Indonesian oil palm potentially enhanced by landscape context. Agriculture, Ecosystems and Environment, 232(2016): 141–149. DOI: 10.1016/j.agee.2016.08.006.
Ostrowska A, Por?bska G. 2015. Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecological Indicators, 49(2014): 104–109. DOI: 10.1016/j.ecolind.2014.09.044.
Othman R, Latiff MNH, Tukiman I, Hashim KSHY. 2015. Effects of altitude and microclimate on the distribution ferns in and urban areas. Jurnal Teknologi, 77(30): 125–131. DOI: 10.11113/jt.v77.6876.
Panggabean N, Sabrina T, Lubis KS. 2016. Populasi bakteri tanah pada piringan tanaman kelapa sawit akibat pemberian pupuk NPK komplit. Jurnal Agroekoteknologi, 4(3): 2069–2076.
Potapov A, Bonnier R, Sandmann D, Wang S, Widyastuti R, Scheu S, Krashevska V. 2020. Aboveground soil supports high levels of biological activity in oil palm plantations. Frontiers in Ecology and the Environment, 18(4): 181–187. DOI: 10.1002/fee.2174.
Powlson DS, Cai Z, Lemanceau P. 2015. Soil carbon dynamics and nutrient cycling. In: Banwart SA, Noellemeyer E, Milne E (eds). Soil Carbon: Science, Management and Policy for Multiple Benefits. CABI International, Wallingford.
Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169(2013): 156–173. DOI: 10.1016/j.agrformet.2012.09.012.
Richardson SJ, Walker LR. 2010. Nutrient ecology of ferns. In: Mehltreter K, Walker LR, Sharpe JM (eds). Fern Ecology. Cambridge University Press, Cambridge.
Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM et al. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME Journal, 1(4): 283–290. DOI: 10.1038/ismej.2007.53.
Saharizan N, Karim MFA, Madzri NH et al. 2021. Species diversity of pteridophytes in oil palm plantations at Segamat, Johor. IOP Conference Series: Earth and Environmental Science, 756(2021): 1–12. DOI: 10.1088/1755-1315/756/1/012038.
Salazar L, Paez-Vacas M, Kessler M, Kluge J, Homeier J. 2021. Variation of foliar calcium and magnesium in six fern species at different elevations. IOP Conference Series: Earth and Environmental Science, 690(1): 1–6. DOI: 10.1088/1755-1315/690/1/012056.
Salazar L, Homeier J, Kessler M, Abrahamczyk S, Lehnert M, Krömer T, Kluge J. 2015. Diversity patterns of ferns along elevational gradients in Andean tropical forests. Plant Ecology and Diversity, 8(1): 13–24. DOI: 10.1080/17550874.2013.843036.
Satriawan H, Fuady Z, Ernawita. 2021. The potential of Nephrolepis biserrata fern as ground cover vegetation in oil palm plantation. Biodiversitas, 22(11): 4808–4817. DOI: 10.13057/biodiv/d221113.
Sofiyanti N. 2013. The diversity of epiphytic fern on the oil palm tree (Elaeis guineensis Jacq.) in Pekanbaru, Riau. Jurnal Biologi, 17(2): 51–55.
Suzanti F, Kuswardani RA, Rahayu S, Susanto A. 2016. Diversity of vascular and insects canopy epiphytes on palm oil in North Sumatra, Indonesia. American Journal of Environmental Protection, 5(3): 39–49. DOI: 10.11648/j.ajep.20160503.11.
Talgre L, Roostalu H, Mäeorg E, Lauringson E. 2017. Nitrogen and carbon release during decomposition of roots and shoots of leguminous green manure crops. Agronomy Research, 15(2): 594–601.
Tarigan S, Wiegand K, Sunarti, Slamet B. 2018. Minimum forest cover required for sustainable water flow regulation of a watershed: A case study in Jambi Province, Indonesia. Hydrology and Earth System Sciences, 22(1): 581–594. DOI: 10.5194/hess-22-581-2018.
Thompson LR, Sanders JG, Mcdonald D et al. 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551(1): 457–463. DOI: 10.1038/nature24621.
Truu M, Ostonen I, Preem JK et al. 2017. Elevated air humidity changes soil bacterial community structure in the silver birch stand. Frontiers in Microbiology, 8(557): 1–15. DOI: 10.3389/fmicb.2017.00557.
United States Department of Agriculture. 2011. Carbon to nitrogen ratios in cropping systems. http://www.nrcs.usda.gov.
van Straaten O, Corre MD, Wolf K et al. 2015. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proceedings of the National Academy of Sciences of the United States of America, 112(32): 9956–9960. DOI: 10.1073/pnas.1504628112.
Waite PA, Schuldt B, Link M et al. 2019. Soil moisture regime and palm height influence embolism resistance in oil palm. Tree Physiology, 39(10): 1696–1712. DOI: https://doi.org/10.1093/treephys/tpz061.
Wang Q, Wang C, Yu WW et al. 2018. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations. Frontiers in Microbiology, 9(1543): 1–10. DOI: 10.3389/fmicb.2018.01543.
Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW. 2002. Managing soil fertility in organic farming systems. https://orgprints.org/id/eprint/8060/2/Watson_orgprints_8060.pdf.
Wyszkowska J, Wyszkowski M. 2002. Effect of cadmium and magnesium on microbiological activity in soil. Polish Journal of Environmental Studies, 11(5): 585–591.
Zhalnina K, Dias R, de Quadros PD et al. 2014. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 69(2): 395–406. DOI: 10.1007/s00248-014-0530-2.
Zhang L, Nurvianto S, Harrison R. 2010. Factors affecting the distribution and abundance of Asplenium nidus L. in a tropical lowland rain forest in Peninsular Malaysia. Biotropica, 42(4): 464–469. DOI: 10.1111/j.1744-7429.2009.00607.x.
Zhang XF, Zhao L, Xu SJ, Liu YZ, Liu HY, Cheng GD. 2012 Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology, 114(4): 1054–1065. DOI: 10.1111/jam.12106.
Zytynska SE, Fay MF, Penney D, Preziosi RF. 2011. Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(2011), 1329–1336. DOI: 10.1098/rstb.2010.0183.