Usability of planted mangroves in the coastal area of Semarang, Indonesia, as the source of secondary metabolite extracts

##plugins.themes.bootstrap3.article.main##

ENDAH DWI HASTUTI
http://orcid.org/0000-0002-9923-1110
MUNIFATUL IZZATI
SRI DARMANTI

Abstract

Abstract. Hastuti ED, Izzati M, Darmanti S. 2023. Usability of planted mangroves in the coastal area of Semarang, Indonesia, as the source of secondary metabolite extracts. Biodiversitas 24: 2409-2415. Mangrove plants are a potential source of secondary metabolites. So the secondary metabolites from mangrove plants must be assessed to promote their utilization. Considering this, the present study was carried out to analyze the alkaloid and phenol content in mangrove species in Tugu District, Semarang City, Central Java, Indonesia. Alkaloid and phenol content in five mangrove species (Avicennia marina, Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia alba, and Xylocarpus moluccensis) were estimated using the spectrophotometry method. The study results revealed that the alkaloid content of A. marina was highest (0.23 ± 0.11%), while the highest concentration of phenol content was found in X. moluccensis (9.66 ± 1.36%). However, after including the other parameters, viz., abundance Index and accessibility Index, A. marina, was found to be a potential source of alkaloid extract, and R. mucronata was a potential source of phenol extract.

##plugins.themes.bootstrap3.article.details##

References
van Bijsterveldt, C. E. J., Debrot, A. O., Bouma, T. J., Maulana, M. B., Pribadi, R., Schop, J., Tonneijck, F. H., et al. (2022). To plant or not to plant: When can planting facilitate mangrove restoration? Frontiers in Environmental Science, 9, 1–18. Diambil dari https://www.frontiersin.org/articles/10.3389/fenvs.2021.690011/full
Bryan-Brown, D. N., Connolly, R. M., Richards, D. R., Adame, F., Friess, D. A., & Brown, C. J. (2020). Global trends in mangrove forest fragmentation. Scientific Reports, 10(1), 7117. Springer US. Diambil dari http://dx.doi.org/10.1038/s41598-020-63880-1
Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M., Ribeiro, M., Fernandes, M., Barros, P., et al. (2014). Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese coast: High potential as a source of anticancer compounds. Marine Drugs, 12(1), 98–114. Diambil dari http://www.mdpi.com/1660-3397/12/1/98
Dalimunthe, S. A., & Putri, I. A. P. (2017). Mangrove rehabilitation in seribu islands at the crossroad of awareness and tokenism (hal. 229–245). Springer. Diambil dari http://link.springer.com/10.1007/978-4-431-56481-2_15
Gajula, H., Kumar, V., Vijendra, P. D., Rajashekar, J., Sannabommaji, T., & Basappa, G. (2020). Secondary metabolites from mangrove plants and their biological activities. Biotechnological Utilization of Mangrove Resources (hal. 117–134). Elsevier. Diambil dari https://linkinghub.elsevier.com/retrieve/pii/B9780128195321000056
Glasenapp, Y., Korth, I., Nguyen, X.-V., & Papenbrock, J. (2019). Sustainable use of mangroves as sources of valuable medicinal compounds: Species identification, propagation and secondary metabolite composition. South African Journal of Botany, 121, 317–328. South African Association of Botanists. Diambil dari https://doi.org/10.1016/j.sajb.2018.11.020
Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729–738. Diambil dari https://onlinelibrary.wiley.com/doi/10.1111/geb.12449
Hogarth, P. J. (2015). The biology of mangroves and seagrasses (3r ed.). Oxford: Oxford University Press.
Hussain, M. S., Rahman, M. A., Fareed, S., Ansari, S., Ahmad, I., & Mohd. Saeed. (2012). Current approaches toward production of secondary plant metabolites. Journal of Pharmacy and Bioallied Sciences, 4(1), 10. Diambil dari http://www.jpbsonline.org/text.asp?2012/4/1/10/92725
Kauffman, J., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forestry, Working pa, 11. Diambil dari http://www.amazonico.org/speclab/SiteAssets/SitePages/Methods/Mangrove-biomass-CIFOR.pdf
Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18(December 2019), 100255. Elsevier. Diambil dari https://doi.org/10.1016/j.jarmap.2020.100255
Maza, M., Lara, J. L., & Losada, I. J. (2021). Predicting the evolution of coastal protection service with mangrove forest age. Coastal Engineering, 168, 103922. Elsevier B.V. Diambil dari https://doi.org/10.1016/j.coastaleng.2021.103922
Nurdiani, R., Firdaus, M., & Prihanto, A. A. (2012). Phytochemical Screening and Antibacterial Activity of Methanol Extract of Mangrove Plant (Rhyzophora mucronata) from Porong River Estuary. Journal Basic Science and Technology, 1(2), 27–29.
Pham, T., Yokoya, N., Bui, D., Yoshino, K., & Friess, D. (2019). Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing, 11(3), 230. Diambil dari http://www.mdpi.com/2072-4292/11/3/230
Rahman, M. A. A., & Asmawi, M. Z. (2016). Local Residents’ Awareness towards the Issue of Mangrove Degradation in Kuala Selangor, Malaysia. Procedia - Social and Behavioral Sciences, 222, 659–667. Elsevier B.V. Diambil dari http://dx.doi.org/10.1016/j.sbspro.2016.05.222
Rodrigues, C. F., & ?ernáková, L. (2020). Farnesol and tyrosol: Secondary metabolites with a crucial quorum-sensing role in candida biofilm development. Genes, 11(4), 444. Diambil dari https://www.mdpi.com/2073-4425/11/4/444
Salvi, L., Brunetti, C., Cataldo, E., Niccolai, A., Centritto, M., Ferrini, F., & Mattii, G. B. (2019). Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism. Plant Physiology and Biochemistry, 139(March), 21–32. Elsevier. Diambil dari https://doi.org/10.1016/j.plaphy.2019.03.002
Sari, N., Patria, M. P., Soesilo, T. E. B., & Tejakusuma, I. G. (2019). The structure of mangrove communities in response to water quality in Jakarta Bay, Indonesia. Biodiversitas Journal of Biological Diversity, 20(7), 1873–1879. Diambil dari https://smujo.id/biodiv/article/view/3675
Seglah, P. A., Wang, Y., Wang, H., & Bi, Y. (2019). Estimation and efficient utilization of straw resources in Ghana. Sustainability, 11(15), 4172. Diambil dari https://www.mdpi.com/2071-1050/11/15/4172
Syahirah, Z. N., Noor, J. N. J., & Syafinie, A. M. (2018). Effect of disturbance on mangrove species diversity in Delta Tumpat, Kelantan, Malaysia. Tropical Plant Research, 5(3), 391–395. Diambil dari http://www.tropicalplantresearch.com/download/294/48.pdf
Teutli-Hernández, C., Herrera-Silveira, J. A., Comín, F. A., & López, M. M. (2019). Nurse species could facilitate the recruitment of mangrove seedlings after hydrological rehabilitation. Ecological Engineering, 130, 263–270. Elsevier. Diambil dari http://dx.doi.org/10.1016/j.ecoleng.2017.07.030
Tiwari, R., & Rana, C. S. (2015). Plant secondary metabolites. International Journal of Engineering Research and General Science, 3(5), 660–670. New Delhi: Springer India. Diambil dari http://link.springer.com/10.1007/978-81-322-2401-3_11
Yaegashi, J., Oakley, B. R., & Wang, C. C. C. (2014). Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. Journal of Industrial Microbiology and Biotechnology, 41(2), 433–442. Diambil dari https://academic.oup.com/jimb/article/41/2/433/5995300