Screening of indole-3-acetic acid PGPB from three agricultural systems at Nakhon Pathom, Thailand

##plugins.themes.bootstrap3.article.main##

METHANEE HOMTHONG
WANPHEN KAEWPUK
SUKANYA YAMSUAN
ANUNYA THONGSIMA
KANLAYA MOKKAPAN
VACHIRAPORN PIKULTHONG

Abstract

Abstract. Homthong M, Kaewpuk W, Yamsuan S, Thongsima A, Mokkapan K, Pikulthong V. 2022. Screening of indole-3-acetic acid PGPB from three agricultural systems at Nakhon Pathom, Thailand. Biodiversitas 23: 5935-5941. Plant growth-promoting bacteria (PGPB) are associated with plant roots and enhance growth via a variety of mechanisms, including fixation of atmospheric nitrogen, solubilization of phosphorus, phytohormone synthesis, and plant phenolic compound stimulation. Sixty-five isolated bacteria from the three agricultural systems in Nakhon Pathom were screened for IAA production. The results showed that seven isolates—C01-28, C02-48, C02-51, G01-34, G03-25, G03-38, and O02-46—produced IAA under L-tryptophan as a precursor at values of 9.08 ± 0.51, 68.64 ± 29.07, 40.67 ± 18.04, 10.65 ± 1.07, 63.30 ± 1.15, 37.73 ± 1.80, and 121.28 ± 15.20 mg mL-1, respectively. Capability on plant growth-promoting traits revealed that none of the isolates stimulated ten-morning glory (Ipomoea aquatica Forsk.) seedling growth, which was not significantly different from the control. Isolates O02-46 enhanced salicylic acid (SA) in ten-morning glory seedlings the most, showing 7.18 ± 1.78 µg g-1 of fresh weight, while isolates G01-34 enhanced phenolic compound (PC) production the most showing 218.18 ± 29.55 mg GAE g-1 extract, respectively. The 16S rRNA analysis revealed that isolates O02-46, C02-48, G03-25, and C02-51 were identified as similar to Paenibacillus alvei at 99.20% (Accession number AY826588.1), Bacillus megaterium at 79.91% (Accession number MH031358.1), Bacillus sp. at 98.57% (Accession number JF322976.1), and Lysinibacillus fusiformis at 99.61% (Accession number HE610782.1).

##plugins.themes.bootstrap3.article.details##

References
Ahemad M, Kibret M. 2013. Mechanisms and applications of growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci. 26: 1-20. DOI: 10.1016/j.jksus.2013.05.001
Ahmad F, Ahmad I, Khan MS. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181. 10.1016/j.micres.2006.04.001
Al-Wakeel SAM, Moubasher H, Gabr MM, Madany MMY. 2013. Induced systemic resistance: an innovative control method to manage branched broomrape (Orobache ramose L.) in tomato. IUFS J. Biol. 72(1): 9-21.
Arshad M, Frankenberger WT. 1993. Microbial production of plant growth regulators. In: Blaine, F., Metting, Jr. (Eds.), Soil Microbial Ecology. (pp. 307-347). Marcel and Dekker, Inc., New York.
Yampul A, Dechkla M, Boonman N, Teerakathiti T, Phakpaknam S. 2020. Embryo of Pink Lotus and White Lotus (Nelumbo nucifera Gaertn.) tissue culture and determination of seedling sensitivity to gamma rays. J Sci Technol MSU. 39(5): 506-513.
Boonnadakul C, Cheunbarn S, Cheunbarn T, Klayraung S, Aumtong S. 2019. Selection of free-living nitrogen fixing bacteria to promote on rice growth. Naresuan Phayao Journal. 12: 32-40.
Chuaboon W, Athinuwat D. 2014. Plant Hormone Produced from Pseudomonas fluorescens SP007s to Enhance Growth of Organic Kale. SNRUJST. 3(3): 196-205.
Datta C, Basu PS. 2000. lndole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155(2): 123-127. DOI: 10.1016/S0944-5013(00)80047-6
Denance N, Sanchez-Vallet A, Goffner D, Molina A. 2013. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 4 (155). DOI: 1-12. 10.3389/fpls.2013.00155
Dong J, Wan G, Liang Z. 2010. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol. 148: 99-104. DOI: 10.1016/j.jbiotec.2010.05.009
Flores HE, Vivanco JM, Loyola-Vargas VM. 1999. “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci. 4: 220–226. DOI: 10.1016/s1360-1385(99)01411-9
Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012: 1-15. DOI: 10.6064/2012/963401
Gordon AS, Weber RP. 1950. Colorimetric estimation of indole acetic acid plant. Plant Physiol. 192-195. DOI: 10.1104/pp.26.1.192
Horemans S, Vlassak K. 1985. Production of indole-3-acetic acid by Azospirillum brasilense. In: W. Klingmuller (Ed.), Azospirillum III: genetics, physiology, (pp 98-108). Ecol. Springer-Verlag, Berlin. DOI: 10.1007/978-3-642-70791-9_10
Inthasan J, Dechjirarattanasiri C, Boonmee P. 2017. Effect of Bacteria-producing Indole-3-Acetic Acid (IAA) on Growth and Nutrient Contents of Bird Chili (Capsicum annuum L.). J Agriculture. 33(3): 333-344.
Katoch R, Mann APS, Sohal BS. 2005. Enhanced enzyme activities and induction of acquired resistance in pea with elicitors. J. Veg. Sci. 11: 67-83. DOI: 10.1300/J484v11n01_07
Kundan R, Pant G, Jado N, Agrawal PK. 2015. Plant growth promoting rhizobacteria: mechanism and current prospective. J. fertil. pestic. 6(2): 1-9. DOI: 10.4172/2471-2728.1000155
Mendoza D, Cuaspud O, Arias JP, Ruiz O, Arias M. 2018. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnol. Rep. E00273. DOI: 10.1016/j.btre.2018.e00273
Ncube B, Finnie JF, Van Staden J. 2012. Quality from the field: the impact of environmental factors as quality determinants in medicinal plants. S. Afr. J. Bot. 82: 11-20. DOI: 10.1016/j.sajb.2012.05.009
Onanong K, Sirithon S, Natthida W. 2011. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods. 3: 88-99. DOI: 10.1016/j.jff.2011.03.002
Patten CL, Glick BR. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 53: 102-107. DOI: 10.1139/m96-032
Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Plant Physiol. 118: 10-15. DOI: 10.1034/j.1399-3054.2003.00086.x
Pikovskaya RI. 1948. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiology. 17: 362-370.
Pliego C, Ramos C, Vicente AD, Cazorla FM. 2011. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil. 340: 505-520. DOI: 10.1007/s11104-010-0615-8
Raskin I, Turner IM, Melander WR. 1989. “Regulation of heat production in the inflorescence of an Arum lily by endogenous salicylic acid. Proc. Natl. Acad. Sci. U.S.A. 86(7): 2214-2218. DOI: 10.1073/pnas.86.7.2214
Schwyn B, Neiland JB. 1987. Universal chemical assays for the detection and determination of siderophores. Anal. Biochem. 160(1): 47-56. DOI: 10.1016/0003-2697(87)90612-9
Serghini KA, Perez-de-Luque A, Castejon-Munoz M, Garcia-Torres L, Jorrin, JV. 2001. Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: Induced synthesis and excretion of 7-hydroxylated simple coumarins. J. Exp. Bot. 52: 2227-2234. DOI: 10.1093/jexbot/52.364.2227
Ton J, Flors V, Mauch-Mani B. 2009. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14: 310-317. DOI: 10.1016/j.tplants.2009.03.006
Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24. DOI: 10.1016/j.micres.2015.12.003
Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Combaret CP. 2013. Plant growth promoting rhizobacteria and root system functioning. Front. Plant Sci. 4(356): 1-19. DOI: 10.3389/fpls.2013.00356
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2): 697-703. DOI: 10.1128/jb.173.2.697-703.1991
Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 56(1): 2.4.1-2.4.5. DOI: 10.1002/0471142727.mb0204s56
Yasmin F, Othman R, Saad MS, Sijam K. 2007. Screening for beneficial properties of rhizobacteria isolated from sweet potato rhizophere. Biotechnol. 6: 49-52. DOI: 10.3923/BIOTECH.2007.49.52

Most read articles by the same author(s)