Diversity in characteristics of tropical peatlands varying in land uses leads to differences in methane and carbon dioxide emissions

##plugins.themes.bootstrap3.article.main##

AKHMAD R. SAIDY
BAMBANG J. PRIATMADI
MELDIA SEPTIANA

Abstract

Abstract. Saidy AR, Priatmadi BJ, Septiana M. 2022. Diversity in characteristics of tropical peatlands varying in land uses leads to differences in methane and carbon dioxide emissions. Biodiversitas 23: 6293-6301. The use of tropical peatlands for commercial agriculture causes a change in their original function as carbon storage to become sources of methane (CH4) and carbon dioxide (CO2) emissions. Therefore, this research aims to quantify the emission of CH4 and CO2, and peat characteristics in five tropical peatlands with different land uses, namely shrubs-, burned-, Albizia-, spring onion-, and lettuce-peatlands, to determine factors controlling carbon emissions. The results showed that CH4 emission ranged from 0.21 to 0.58 mg C m-2 h-1, with the lowest and the highest obtained in burned- and cultivated-peatlands (spring onion- and lettuce peatlands), respectively. The emission of CO2 ranged from the lowest in burned peatland (34.10-47.06 mg C m-2 h-1) to the highest in shrubs-peatland (136.79-180.87 mg C m-2 h-1). This showed that the diversity in CH4 emissions with different land uses is attributed to variations in the water table, water-filled pore space, ammonium, and nitrate contents. The rates of CO2 emission were controlled by carbohydrate-, fiber-, organic C-, and lignin-contents. This indicated that land and water managements need to be applied to reduce the emissions of CH4 and CO2 in tropical peatlands with different land uses.

##plugins.themes.bootstrap3.article.details##

References
Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J, Rafiastanto A. 2010. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences 7: 3403-3419. https://doi.org/10.5194/bg-7-3403-2010
Arai H, Hadi A, Darung U, Limin SH, Takahashi H, Hatano R, Inubushi K. 2014. Land use change affects microbial biomass and fluxes of carbon dioxide and nitrous oxide in tropical peatlands. Soil Science and Plant Nutrition 60: 423-434. https://doi.org/10.1080/00380768.2014.903576
Asina F, Brzonova I, Voeller K, Kozliak E, Kubátová A, Yao B, Ji Y. 2016. Biodegradation of lignin by fungi, bacteria and laccases. Bioresour. Technol. 220: 414-424. https://doi.org/10.1016/j.biortech.2016.08.016
Boon A, Robinson JS, Chadwick DR, Cardenas LM. 2014. Effect of cattle urine addition on the surface emissions and subsurface concentrations of greenhouse gases in a UK peat grassland. Agriculture, Ecosystems & Environment 186: 23-32. https://doi.org/10.1016/j.agee.2014.01.008
Bremer JM, Mulvaney CS. 1982. Nitrogen-total. In: Page AL, Keeney DR (eds.). Methods of Soil Analysis Part 2: Chemical and Biological Methods. Soil Science Society of America Inc., Madison WI.
Bundy LG, Meisinger JJ. 1994. Nitrogen availability indices. In: Weaver RW, Angle JS, Bottomley PS (eds.). Methods of Soil Analysis, Part 2: Chemical and Biological Methods. Soil Science Society of America, Madison WI.
Cepáková Š, Frouz J. 2015. Changes in chemical composition of litter during decomposition: a review of published 13C NMR spectra. Journal of Soil Science and Plant Nutrition 15: 805-815. http://dx.doi.org/10.4067/S0718-95162015005000055
Chen M, Chang L, Zhang J, Guo F, Vymazal J, He Q, Chen Y. 2020. Global nitrogen input on wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions. Environmental Science and Ecotechnology 4: 100063. https://doi.org/10.1016/j.ese.2020.100063
Chesson A. 1981. Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. Journal of the Science of Food and Agriculture 32: 745-758. https://doi.org/10.1002/jsfa.2740320802
Cobb AR, Harvey CF. 2019. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55: 9351-9377. https://doi.org/10.1029/2019WR025411
Cooper HV, Vane CH, Evers S, Aplin P, Girkin NT, Sjögersten S. 2019. From peat swamp forest to oil palm plantations: The stability of tropical peatland carbon. Geoderma 342: 109-117. https://doi.org/10.1016/j.geoderma.2019.02.021
Deshmukh CS, Julius D, Evans CD, Nardi, Susanto AP, Page SE, Gauci V, Laurén A, Sabiham S, Agus F, Asyhari A, Kurnianto S, Suardiwerianto Y, Desai AR. 2020. Impact of forest plantation on methane emissions from tropical peatland. Global Change Biology 26: 2477-2495. https://doi.org/10.1111/gcb.15019
Dohong A, Aziz AA, Dargusch P. 2017. A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy 69: 349-360. https://doi.org/10.1016/j.landusepol.2017.09.035
Dommain R, Dittrich I, Giesen W, Joosten H, Rais DS, Silvius M, Wibisono ITC. 2016. Ecosystem services, degradation and restoration of peat swamps in the Southeast Asian tropics. In: Bonn A, Allott T, Evans M, Joosten H, Stoneman R (eds.). Peatland Restoration and Ecosystem Services: Science, Policy and Practice. Cambridge University Press, Cambridge.
Feofilova EP, Mysyakina IS. 2016. Lignin: Chemical structure, biodegradation, and practical application (a review). Applied Biochemistry and Microbiology 52: 573-581. https://doi.org/10.1134/S0003683816060053
Girkin NT, Dhandapani S, Evers S, Ostle N, Turner BL, Sjögersten S. 2020. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry 147: 87-97. https://doi.org/10.1007/s10533-019-00632-y
Girkin NT, Vane CH, Cooper HV, Moss-Hayes V, Craigon J, Turner BL, Ostle N, Sjögersten S. 2019. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142: 231-245. https://doi.org/10.1007/s10533-018-0531-1
Grandy AS, Erich MS, Porter GA. 2000. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biol. Biochem. 32: 725-727. https://doi.org/10.1016/S0038-0717(99)00203-5
Grover SPP, Baldock JA. 2013. The link between peat hydrology and decomposition: Beyond von Post. Journal of Hydrology 479: 130-138. https://doi.org/10.1016/j.jhydrol.2012.11.049
Hadi A, Inubushi K, Furukawa Y, Purnomo E, Rasmadi M, Tsuruta H. 2005. Greenhouse gas emissions from tropical peatlands of Kalimantan,Indonesia. Nutrient Cycling in Agroecosystems 71: 73-80. https://doi.org/10.1007/s10705-004-0380-2
Hirano T, Kusin K, Limin S, Osaki M. 2014. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biology 20: 555-565. https://doi.org/10.1111/gcb.12296
Hoyos-Santillan J, Lomax BH, Large D, Turner BL, Lopez OR, Boom A, Sepulveda-Jauregui A, Sjögersten S. 2019. Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Sci. Total Environ. 688: 1193-1204. https://doi.org/10.1016/j.scitotenv.2019.06.366
Inubushi K, Otake S, Furukawa Y, Shibasaki N, Ali M, Itang AM, Tsuruta H. 2005. Factors influencing methane emission from peat soils: Comparison of tropical and temperate wetlands. Nutrient Cycling in Agroecosystems 71: 93-99. https://doi.org/10.1007/s10705-004-5283-8
Ishikura K, Hirano T, Okimoto Y, Hirata R, Kiew F, Melling L, Aeries EB, Lo KS, Musin KK, Waili JW, Wong GX, Ishii Y. 2018. Soil carbon dioxide emissions due to oxidative peat decomposition in an oil palm plantation on tropical peat. Agriculture, Ecosystems & Environment 254: 202-212. https://doi.org/10.1016/j.agee.2017.11.025
Ishikura K, Hirata R, Hirano T, Okimoto Y, Wong GX, Melling L, Aeries EB, Kiew F, San Lo K, Musin KK. 2019. Carbon dioxide and methane emissions from peat soil in an undrained tropical peat swamp forest. Ecosystems 22: 1852-1868. https://doi.org/10.1007/s10021-019-00376-8
Ismail I, Haghighi AT, Marttila H, Kurniawan U, Karyanto O, Kløve B. 2021. Water table variations on different land use units in a drained tropical peatland island of Indonesia. Hydrology Research 52: 1372-1388. https://doi.org/10.2166/nh.2021.062
Keller JK, Madvedeff CA. 2016. Soil Organic Matter. In: Vepraskas MJ, Craft CB (eds.). Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. 2nd Edition.CRC Press, Boca Raton.
Kiew F, Hirata R, Hirano T, Xhuan WG, Aries EB, Kemudang K, Wenceslaus J, San LK, Melling L. 2020. Carbon dioxide balance of an oil palm plantation established on tropical peat. Agricultural and Forest Meteorology 295: 108189. https://doi.org/10.1016/j.agrformet.2020.108189
Könönen M, Jauhiainen J, Laiho R, Spetz P, Kusin K, Limin S, Vasander H. 2016. Land use increases the recalcitrance of tropical peat. Wetlands Ecol. Manage. 24: 717-731. https://doi.org/10.1007/s11273-016-9498-7
Kumar P, Adelodun AA, Khan MF, Krisnawati H, Garcia-Menendez F. 2020. Towards an improved understanding of greenhouse gas emissions and fluxes in tropical peatlands of Southeast Asia. Sustainable Cities and Society 53: 101881. https://doi.org/10.1016/j.scs.2019.101881
Kurnain A, Notohadikusumo T, Radjagukguk B. 2006. Impact of development and cultivation on hydro-physical properties of tropical peat soils. Tropics 15: 383-389. https://doi.org/10.3759/tropics.15.383
Kurnianto S, Warren M, Talbot J, Kauffman B, Murdiyarso D, Frolking S. 2015. Carbon accumulation of tropical peatlands over millennia: a modeling approach. Global Change Biology 21: 431-444. https://doi.org/10.1111/gcb.12672
Lau SYL, Midot F, Dom SP, Lo ML, Chin M-Y, Jee MS, Yap ML, Chaddy A, Melling L. 2022. Application of ammonium sulfate affects greenhouse gases and microbial diversity of an oil palm plantation on tropical peat. Archives of Agronomy and Soil Science: 1-14. https://doi.org/10.1080/03650340.2021.2022650
Luta W, Ahmed OH, Omar L, Heng RK, Choo LN, Jalloh MB, Musah AA, Abdu A. 2021. Water table fluctuation and methane emission in pineapples (Ananas comosus (L.) Merr.) cultivated on a tropical peatland. Agronomy 11. https://doi.org/10.3390/agronomy11081448
Marwanto S, Sabiham S, Funakawa S. 2019. Importance of CO2 production in subsoil layers of drained tropical peatland under mature oil palm plantation. Soil and Tillage Research 186: 206-213. https://doi.org/10.1016/j.still.2018.10.021
Miettinen J, Shi C, Liew SC. 2016. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation 6: 67-78. https://doi.org/10.1016/j.gecco.2016.02.004
Nelson DW, Sommers LE. 1996. Total carbon, organic carbon and organic matter. In: Sparks DL (ed.). Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America-American Society of Agronomy Inc., Madison WI.
Parent LE, Caron J. 1993. Physical Properties of Organic Soils. In: Carter MR (ed.). Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton.
Rocha Campos JRd, Silva AC, Fernandes JSC, Ferreira MM, Silva DV. 2011. Water retention in a peatland with organic matter in different decomposition stages. Revista Brasileira de Ciência do Solo 35: 1217-1227. https://doi.org/10.1590/S0100-06832011000400015
Sackett TE, Basiliko N, Noyce GL, Winsborough C, Schurman J, Ikeda C, Thomas SC. 2015. Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy 7: 1062-1074. https://doi.org/10.1111/gcbb.12211
Saidy AR, Mariana ZT, Adji FA, Nusantara RW, Fitria I, Syahrinuddin. 2018. Carbon mineralization dynamics of tropical peats in relation to peat characteristics. Biodiversitas J. Biol. Diver. 19: 1413-1421. https://doi.org/10.13057/biodiv/d190430
Saidy AR, Razie F, Aidawati N, Hidayat T. 2020. Increases in greenhouse gases following the use of peatlands for agricultural areas. IOP Conf. Ser. Earth Environ. Sci. 499: 012021. http://dx.doi.org/10.1088/1755-1315/499/1/012021
Sasidhran S, Adila N, Hamdan MS, Samantha LD, Aziz N, Kamarudin N, Puan CL, Turner E, Azhar B. 2016. Habitat occupancy patterns and activity rate of native mammals in tropical fragmented peat swamp reserves in Peninsular Malaysia. Forest Ecology and Management 363: 140-148. https://doi.org/10.1016/j.foreco.2015.12.037
Silviana SH, Saharjo BH, Sutikno S. 2021. Distribution of carbon stocks in drainage areas on peatlands of Sungai Tohor Village, Meranti Islands District, Indonesia. Biodiversitas Journal of Biological Diversity 22. https://doi.org/10.13057/biodiv/d221149
Sinclair AL, Graham LLB, Putra EI, Saharjo BH, Applegate G, Grover SP, Cochrane MA. 2020. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Sci. Total Environ. 699: 134199. https://doi.org/10.1016/j.scitotenv.2019.134199
Swails E, Jaye D, Verchot L, Hergoualc’h K, Schirrmann M, Borchard N, Wahyuni N, Lawrence D. 2018. Will CO2 emissions from drained tropical peatlands decline over time? Links between soil organic matter quality, nutrients, and C mineralization rates. Ecosystems 21: 868-885. https://doi.org/10.1007/s10021-017-0190-4
Takada M, Shimada S, Takahashi H. 2016. Tropical Peat Formation. In: Osaki M, Tsuji N (eds.). Tropical Peatland Ecosystems. Springer Japan, Tokyo.
Upton A, Vane CH, Girkin N, Turner BL, Sjögersten S. 2018. Does litter input determine carbon storage and peat organic chemistry in tropical peatlands? Geoderma 326: 76-87. https://doi.org/10.1016/j.geoderma.2018.03.030
Wakhid N, Hirano T, Okimoto Y, Nurzakiah S, Nursyamsi D. 2017. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Sci. Total Environ. 581-582: 857-865. https://doi.org/10.1016/j.scitotenv.2017.01.035
Warren M, Frolking S, Dai Z, Kurnianto S. 2017. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation. Mitigation and Adaptation Strategies for Global Change 22: 1041-1061. https://doi.org/10.1007/s11027-016-9712-1
Wasis B, Saharjo BH, Putra EI. 2019. Impacts of peat fire on soil flora and fauna, soil properties and environmental damage in Riau Province, Indonesia. Biodiversitas Journal of Biological Diversity 20. https://doi.org/10.13057/biodiv/d200639
Wijedasa LS. 2016. Peat soil bulk density important for estimation of peatland fire emissions. Glob. Chang. Biol. 22: 2959-2959. https://doi.org/10.1111/gcb.13364
Wong GX, Hirata R, Hirano T, Kiew F, Aeries EB, Musin KK, Waili JW, Lo KS, Melling L. 2020. How do land use practices affect methane emissions from tropical peat ecosystems? Agricultural and Forest Meteorology 282-283: 107869. https://doi.org/10.1016/j.agrformet.2019.107869
Xiao L, Xie B, Liu J, Zhang H, Han G, Wang O, Liu F. 2017. Stimulation of long-term ammonium nitrogen deposition on methanogenesis by Methanocellaceae in a coastal wetland. Sci. Total Environ. 595: 337-343. https://doi.org/10.1016/j.scitotenv.2017.03.279

Most read articles by the same author(s)