Differences in bacterial composition between vascular epiphyte and parasitic plants living on the same host plants

##plugins.themes.bootstrap3.article.main##

HOANG DANG KHOA DO
ARIF LUQMAN
MINH THIET VU
HOANG DANH NGUYEN
YOHANES KARTJITO PUTRO
ELSALISA AINUR ROFIQA
HERI SANTOSO
ALFINDA NOVI KRISTANTI
SUCIPTO HARIYANTO
LE MINH BUI
YOSEPHINE SRI WULAN MANUHARA
ANJAR TRI WIBOWO

Abstract

Abstract. Do HDK, Luqman A, Vu MT, Nguyen HD, Putro YK, Rofiqa EA, Santoso H, Kristanti AN, Hariyanto S, Bui LM, Manuhara YSW, Wibowo AT. 2022. Differences in bacterial composition between vascular epiphyte and parasitic plants living on the same host plants. Biodiversitas 23: 5798-5805. Epiphytic and parasitic plants can grow and complete their life cycle while attached to the host. Therefore, the interactions between these plants and their host provide profound evidence for co-evolution. During these symbiotic interactions, bacteria are actively exchanged between parasitic and epiphytic plants with their hosts. Since epiphytes and parasitic plants have different ways of life, they might assemble their bacterial community differently despite living in the same host. However, direct microbiome comparisons between epiphytic and parasitic plants colonizing the same host have never been evaluated. In this study, we examined the bacterial compositions of the epiphytic Hoya sp. and parasitic Dendrophthoe sp. that grow in two host species, frangipani (Plumeria sp.) and teak (Tectona grandis). The results revealed that bacterial compositions in the root of Hoya sp. are highly similar to the peripheral tissue of the host stem. In contrast, bacterial composition in the haustoria of Dendrophthoe sp. is quite distinct from the host. These results revealed that epiphytes and parasitic plants acquire and assemble their microbiome differently, despite living in the same host species. These differences might originate from different nutrient acquisition strategies between the two plants.

##plugins.themes.bootstrap3.article.details##

References
Bartels SF, Chen HYH. 2012. Mechanisms Regulating Epiphytic Plant Diversity. CRC Crit Rev Plant Sci. 31(5):391–400. DOI: 10.1080/07352689.2012.680349.
Batke S. 2012. Epiphytes: a study of the history of forest canopy research. [accessed 2021 Nov 20]. https://pearl.plymouth.ac.uk/handle/10026.1/13973.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 37(8):852–857. DOI: 10.1038/s41587-019-0209-9.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 13(7):581–583. DOI: 10.1038/nmeth.3869.
Callaway RM, Reinhart KO, Moore GW, Moore DJ, Pennings SC. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia. 132(2):221–230. DOI: 10.1007/s00442-002-0943-3.
Cevallos S, Herrera P, Sánchez-Rodríguez A, Declerck S, Suárez JP. 2018. Untangling factors that drive community composition of root associated fungal endophytes of Neotropical epiphytic orchids. Fungal Ecol. 34:67–75. DOI: 10.1016/j.funeco.2018.05.002.
Cevallos S, Herrera P, Vélez J, Suárez JP. 2022. Root-Associated Endophytic and Mycorrhizal Fungi from the Epiphytic Orchid Maxillaria acuminata in a Tropical Montane Forest in Southern Ecuador. Diversity . 14(6):478. DOI: 10.3390/d14060478.
Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E. 2020. Shaping the leaf microbiota: plant–microbe–microbe interactions. J Exp Bot. 72(1):36–56. DOI: 10.1093/jxb/eraa417.
Cui J-L, Vijayakumar V, Zhang G. 2018. Partitioning of Fungal Endophyte Assemblages in Root-Parasitic Plant Cynomorium songaricum and Its Host Nitraria tangutorum. Front Microbiol. 9:666. DOI: 10.3389/fmicb.2018.00666.
Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakraborty A. 2020. Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology. 23:100161. DOI: 10.1016/j.cpb.2020.100161.
Edwards J, Santos-Medellín C, Sundaresan V. 2018. Extraction and 16S rRNA Sequence Analysis of Microbiomes Associated with Rice Roots. Bio Protoc. 8(12):e2884. DOI: 10.21769/BioProtoc.2884.
Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci U S A. 115(6):E1157–E1165. DOI: 10.1073/pnas.1717617115.
Fitzpatrick CR, Schneider AC. 2020. Unique bacterial assembly, composition, and interactions in a parasitic plant and its host. J Exp Bot. 71(6):2198–2209. DOI: 10.1093/jxb/erz572.
Herrmann M, Geesink P, Richter R, Küsel K. 2021. Canopy Position Has a Stronger Effect than Tree Species Identity on Phyllosphere Bacterial Diversity in a Floodplain Hardwood Forest. Microb Ecol. 81(1):157–168. DOI: 10.1007/s00248-020-01565-y.
Iasur Kruh L, Lahav T, Abu-Nassar J, Achdari G, Salami R, Freilich S, Aly R. 2017. Host-Parasite-Bacteria Triangle: The Microbiome of the Parasitic Weed Phelipanche aegyptiaca and Tomato-Solanum lycopersicum (Mill.) as a Host. Front Plant Sci. 8:269. DOI: 10.3389/fpls.2017.00269.
Joel DM, Gressel J, Musselman LJ. 2013. Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies. Springer Science & Business Media.
Korenblum E, Dong Y, Szymanski J, Panda S, Jozwiak A, Massalha H, Meir S, Rogachev I, Aharoni A. 2020. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci U S A. 117(7):3874–3883. DOI: 10.1073/pnas.1912130117.
Maldonado GP, Yarzábal LA, Cevallos-Cevallos JM, Chica EJ, Peña DF. 2020. Root endophytic fungi promote in vitro seed germination in pleurothallis coriacardia (orchidaceae). Lankesteriana. 20(1):107–119. DOI: 10.15517/lank.v20i1.41472.
Metsalu T, Vilo J. 2015. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43(W1):W566–70. DOI: 10.1093/nar/gkv468.
Pascale A, Proietti S, Pantelides IS, Stringlis IA. 2019. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Front Plant Sci. 10:1741. DOI: 10.3389/fpls.2019.01741.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research. 12:2825–2830.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue):D590–6. DOI: 10.1093/nar/gks1219.
Rahayu S, Trisnawati DE, Qoyim I. 2007. Flowering biology of Hoya lacunosa Bl.(Asclepiadaceae) in Bogor Botanical Garden. Biodiversitas Journal of Biological Diversity. 8(1). https://smujo.id/biodiv/article/view/473. DOI: 10.13057/biodiv/d080102.
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4:e2584. DOI: 10.7717/peerj.2584.
Sheng-Liang Z, Shu-Zhen Y, Zhen-Ying W, Shuang-Lin C. 2014. Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera. World J Microbiol Biotechnol. 30(6):1775–1784. DOI: 10.1007/s11274-014-1600-9.
Tsavkelova EA, Cherdyntseva TA, Lobakova ES, Kolomeitseva GL, Netrusov AI. 2001. Microbiota of the Orchid Rhizoplane. Microbiology. 70(4):492–497. DOI: 10.1023/A:1010402715376.
Tsavkelova EA, Glukhareva ID, Volynchikova EA, Egorova MA, Leontieva MR, Malakhova DV, Kolomeitseva GL, Netrusov AI. 2022. Cyanobacterial Root Associations of Leafless Epiphytic Orchids. Microorganisms. 10(5). doi:10.3390/microorganisms10051006. http://dx.doi.org/10.3390/microorganisms10051006.
Tsavkelova EA, Lobakova ES, Kolomeitseva GL, Cherdyntseva TA, Netrusov AI. 2003a. Associative Cyanobacteria Isolated from the Roots of Epiphytic Orchids. Microbiology. 72(1):92–97. DOI: 10.1023/A:1022238309083.
Tsavkelova EA, Lobakova ES, Kolomeitseva GL, Cherdyntseva TA, Netrusov AI. 2003b. Localization of Associative Cyanobacteria on the Roots of Epiphytic Orchids. Microbiology. 72(1):86–91. DOI: 10.1023/A:1022286225013.
Vu MT, Geraldi A, Do HDK, Luqman A, Nguyen HD, Fauzia FN, Amalludin FI, Sadila AY, Wijaya NH, Santoso H, et al. 2022. Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes. Biology . 11(5):695. DOI: 10.3390/biology11050695.
Wu Y, Qu M, Pu X, Lin J, Shu B. 2020. Distinct microbial communities among different tissues of citrus tree Citrus reticulata cv. Chachiensis. Sci Rep. 10(1):6068. DOI: 10.1038/s41598-020-62991-z.
Yoshida S, Cui S, Ichihashi Y, Shirasu K. 2016. The Haustorium, a Specialized Invasive Organ in Parasitic Plants. Annu Rev Plant Biol. 67:643–667. DOI: 10.1146/annurev-arplant-043015-11170.

Most read articles by the same author(s)