Sperm osteopontin mRNA expression levels and its correlation on semen quality and fertility in Madura bulls

##plugins.themes.bootstrap3.article.main##

ZULFI NUR AMRINA ROSYADA
https://orcid.org/0000-0002-0080-5066
VINCENTIA TRISNA YOELINDA
EKAYANTI MULYAWATI KAIIN
https://orcid.org/0000-0003-2507-472X
MUHAMMAD GUNAWAN
MOKHAMAD FAKHRUL ULUM
https://orcid.org/0000-0003-2092-9645
LIGAYA I.T.A TUMBELAKA
https://orcid.org/0000-0002-9021-1076
DEDY DURYADI SOLIHIN
MUHAMMAD AGIL
https://orcid.org/0000-0003-3591-4219
ASEP GUNAWAN
BAMBANG PURWANTARA
https://orcid.org/0000-0002-6652-4902

Abstract


Abstract. Rosyada ZNA, Yoelinda VT, Kaiin EM, Gunawan M, Ulum MF, Tumbelaka LITA, Solihin DD, Agil M, Gunawan A, Purwantara B. 2023. Sperm osteopontin mRNA expression levels and its correlation on semen quality and fertility in Madura bulls. Biodiversitas 24: 563-570. Osteopontin (OPN) gene transcripts influence spermatogenesis and germ cell development. Therefore, transcriptome analysis is needed to identify the fertility factor OPN in Madura bull sperm. Madura cattle are crosses originating from Bos indicus (zebu) and Bos javanicus (banteng). This study aims to examine sperm osteopontin (OPN) mRNA expression levels and its correlation with semen quality and fertility in Madura bulls. Frozen semen samples from Madura bulls were categorized as high-fertile (n: 4, average field conception rate: 78.28±3.25%) or sub-fertile (n: 4, average field conception rate: 66.73±5.01%). In post-thaw semen samples, sperm motility, viability, membrane, acrosome, and DNA fragmentation index were evaluated. OPN expression in sperm total RNA was analyzed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR). The data analysis between the two fertility groups was assessed with Student's t-test and Pearson Square. Receiver-operating characteristic analysis and diagnostic sensitivity and specificity calculations were performed. Sperm motility, acrosome intact, and DFI differ (p<0.05) between groups, whereas viability and membrane plasma intact have no significance (p>0.05). In high-fertile Madura bulls, OPN mRNA was upregulated (p<0.05). The OPN mRNA expression had a strong correlation with the field conception rate (R: 0.807, P<0.05), sperm motility, and intact acrosome (R: 0.899, p<0.01; R: 0.804, p<0.05) respectively. In contrast, OPN negatively correlated with sperm DFI (R: -0.764, p<0.05). The OPN predicted bull fertility with 81.3% accuracy, 75% sensitivity, and 75% specificity. Thus, OPN may serve as a potential biomarker of Madura bull fertility.


##plugins.themes.bootstrap3.article.details##

References
Abedin, SN, Leela V, Devendran P, Suganya G, Rangasamy S, Loganathasamy K. 2021. Seminal plasma osteopontin: a marker for potential fertility in dogs. Indian J Anim Res 55 (7): 758–62. DOI: /10.18805/IJAR.B-4131.
Badan Standarisasi Nasional. (2017) SNI (Standar Nasional Indonesia) Semen Beku-Bagian 1 : Sapi. Jakarta: Badan Standarisasi Nasional.
Björndahl L, Söderlund I, Kvist U. 2003. Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. Hum Reprod 18 (4): 813–16. DOI: 10.1093/humrep/deg199.
Boccia L, Francesco SD, Neglia G, Blasi MD, Longobardi V, Campanile G, Gasparrini B. 2013. Osteopontin improves sperm capacitation and invitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology 80 (3): 212–17. DOI: 10.1016/j.theriogenology.2013.04.017.
Cancel, Aida M, Chapman DA, Killian GJ. 1999. Osteopontin localization in the holstein bull reproductive tract. Biol Reprod 60 (2): 454–60. DOI: 10.1095/biolreprod60.2.454.
Chen Y, Wang K, Zhang S. 2022. Osteopontin enhances sperm capacitation and in vitro fertilization efficiency in boars. J Anim Sci Technol 64 (2): 235–46. DOI: 10.5187/jast.2022.e15.
Cheng FP, Fazeli A, Voorhout WF, Marks A, Bevers MM, Colenbrander B. 1996. Use of peanut to assess the acrosomal status and the zona pellucida-induced acrosome reaction in stallion spermatozoa. J Androl 176 (6): 674–82.
Filho CB, Ivan, Menegassi SR, Pereira GR, Salton GD, Munari FM, Schneider MR, Mattos RC, Barcellos JOJ, Laurino JP, Lima EOC, Jobim MIM. 2021. Bovine seminal plasma osteopontin: structural modelling, recombinant expression and its relationship with semen quality. Andrologia 53 (1): 1–15. DOI: 10.1111/and.13905.
Erikson, David W, Way AL, Chapman DA, Killian. GJ. 2007. Detection of osteopontin on holstein bull spermatozoa, in cauda epididymal fluid and testis homogenates, and its potential role in bovine fertilization. Reproduction 133 (5): 909–17. DOI: 10.1530/REP-06-0228.
Ganguly I, Gaur GK, Kumar S, Mandal DK, Kumar M, Singh U, Kumar S, Sharma A 2013. Differential expression of protamine 1 and 2 genes in mature spermatozoa of normal and motility impaired semen producing crossbred frieswal (HF×Sahiwal) bulls. Res Vet Sci 94 (2): 256–62. DOI: 10.1016/j.rvsc.2012.09.001.
Gomes FP, Park R, Viana AG, Costa CF, Topper E, Kaya A, Memili E, Yates JR, Moura AA. 2020. Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci Rep 10 (1): 1–14. DOI: 10.1038/s41598-020-71015-9.
Goswami S, Gregorio LK, Sinha N, Bhutada S, Bhattacharjee R, Kline D, Vijayaraghavan S. 2019. Regulators of the protein phosphatase pp1?2, ppp1r2, ppp1r7, and ppp1r11 are involved in epididymal sperm maturation. J Cell Physiol 234 (3): 3105–18. DOI: 10.1002/jcp.27130.Regulators.
Harrison RAP, Vickers SE. 1990. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J Reprod Fert 88 (1): 343–52. DOI: 10.1530/jrf.0.0880343.
Hernawati T. 2015. The effect of osteopontin in semen freezing process on the quality of holstein friesian dairy bull frozen semen. Asian J Multidiscip 1 (33): 1–23.
Hitit M, Özbek M, Guner SA, Guner H, Oztug M, Bodu M, Kirbas M, Bulbul B, Bucak MN, Ataman MB, Memili E, Kaya A. 2021. Proteomic fertility markers in ram sperm. Anim Reprod Sci 235: 106882. DOI: 10.1016/j.anireprosci.2021.106882.
Jobim MIM, Oberst. ER 2004. Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability 61: 255–66. DOI: 10.1016/S0093-691X(03)00230-9.
Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Sarsaifi K, Behan AA, Kaka U, Ebrahimi M. 2015. ?-linolenic acid supplementation in bioxcell® extender can improve the quality of post-cooling and frozen-thawed bovine sperm. Anim Reprod Sci 153: 1–7. DOI: DOI: 10.1016/j.anireprosci.2014.12.001.
Kutsiyah F. 2017. Population dynamic and productivity of madura cattle in corservation area of sapudi island. Sains Pet 15 (2): 70–77.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative pcr and the 2-??ct method. Methods 25 (4): 402–8. DOI: 10.1006/meth.2001.1262.
Manehat FX, Dethan AA, Tahuk PK. 2021. Motility, viability, spermatozoa abnormality, and ph of bali cattle semen in another-yellow water driller stored in a different time. J Trop Anim Sci Tech 3 (2): 76–90. DOI: 10.32938/jtast.v3i2.1032.
Molina LCP, Luque GM, Balestrini PA, Briggiler CIM, Romarowski A, Buffone MG. 2018. Molecular basis of human sperm capacitation. Front Cell Dev Biol 6 (July): 1–23. DOI: 10.3389/fcell.2018.00072.
Monaco E, Gasparrini B, Boccia L, Rosa AD, Attanasio L, Zicarelli L, Killian GJ. 2009. Effect of osteopontin (opn) on in vitro embryo development in cattle.Theriogenology 71 (3): 450–57. DOI: 10.1016/j.theriogenology.2008.08.012.
Moura AA, Memili E. 2016. Functional aspects of seminal plasma and sperm proteins and their potential as molecular markers of fertility. Anim. Reprod. 13 (3): 191–99. DOI: 10.21451/1984-3143-AR884.
Moura AA, Memili E, Portela AMR, Viana AG, Velho ALC, Bezerra MJB, Vasconselos FR. 2018. Seminal plasma proteins and metabolites: effects on sperm function and potential as fertility markers. Anim Reprod 15 (Irrs): 691–702. DOI: 10.21451/1984-3143-AR2018-0029.
Pardede BP, Agil M, Supriatna I. 2020. Protamine and other proteins in sperm and seminal plasma as molecular markers of bull fertility. Vet World 13 (3): 556–62. DOI: 10.14202/vetworld.2020.556-562.
Perumal P, Srivastava SK, Ghosh SK, Baruah KK, Bag S, Rajoria JS, Kumar K, Rajkhowa C, Pande M, Srivastava N. 2016. Effects of low-density lipoproteins as additive on quality parameters and oxidative stress following cryopreservation of mithun (bos frontalis) spermatozoa. Rep Dom Anim 51 (5): 708–16. DOI: /10.1111/rda.12735.
Pilane CM, Netshirovha TR, Tshabalala MM. 2020. An investigative immunoassay targeting two osteopontin epitopes in boar semen. Open J Anim Sci 10 (03): 560–71.DOI: 10.4236/ojas.2020.103036.
Preedaa MG, Loganathasamy K, Leela V, Pandiyan V. 2020. Detection of osteopontin gene transcripts in bull spermatozoa. Inter J Chem Stud 8 (2): 649–55. DOI: 10.22271/chemi.2020.v8.i2j.8843.
Rarani FZ, Iranpour FG, Dashti GR. 2019. Correlation between sperm motility and sperm chromatin/dna damage before and after cryopreservation and the effect of folic acid and nicotinic acid on post-thaw sperm quality in normozoospermic men. Cell Tissue Bank 20 (3): 367–78. DOI: 10.1007/s10561-019-09775-6.
Rego JPA, Martins JM, Wolf CA, Van Tilburg M. 2016. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls 94(1): 1-13. DOI: 10.2527/jas2016-0811.
Rorie RW, Williams CL, Lester TD. 2016. Association of osteopontin gene promoter single nucleotide polymorphisms with bull semen quality. Adv Reprod Sci 04 (01): 1–7. DOI: 10.4236/arsci.2016.41001.
Said S, Han MS, Niwa K. 2003. Development of rat oocytes following intracytoplasmic injection of sperm heads isolated from testicular and epididymal spermatozoa. Theriogenology 60 (2): 359–69. DOI: 10.1016/S0093-691X(03)00028-1.
Salmah N, Yusuf TALM, Masturi, Sahiruddin, Hasrin, Ummul M. 2021. Motility, viability, and abnormality of the frozen bali bull semen with andromed and egg yolk-tris extender. Hasanuddin J Anim Sci 3 (1): 8–14. DOI: 10.20956/hajas.v3i1.14171.
Selvaraju S, Parthipan S, Somashekar S, Binsila BK, Kolte AP, Arangasamy A, Ravindra JP, Krawetz SA. 2018. Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Syst Biol Reprod Med 00 (00): 1–18. DOI: 10.1080/19396368.2018.1444816.
Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Binsila BK, Arangasamy A, Ravindra JP. 2017. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 7 (July 2016): 1–14. DOI: /10.1038/srep42392.
Singh A, Gill G, Kaur H, Amhme M, Jakhu H. 2018. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog Orthod 19 (1). DOI: 10.1186/s40510-018-0216-2.
Somashekar L, Selvaraju S, Parthipan S, Patil SK, Binsila BK. 2017. Comparative sperm protein profiling in bulls differing in fertility and identification of protein 4 , a potential fertility marker. Andrology 1: 1–20. DOI: 10.1111/andr.12404.
Souza FF, Chirinéa VH, Martins MIM, Lopes MD. 2009. Osteopontin in seminal plasma and sperm membrane of dogs. Reprod Dom Anim 44 (SUPPL. 2): 283–86. DOI: 10.1111/j.1439-0531.2009.01447.x.
Sundararaman MN, Kalatharan J, Jawahar KTP. 2012. Computer assisted semen analysis for quantification of motion characteristics of bull sperm during cryopreservation cycle. Vet World 5 (12): 723–26. DOI: 10.5455/vetworld.2012.723-726.
Sutarno, Setyawan AD. 2016. The diversity of local cattle in indonesia and the efforts to develop superior indigenous cattle breeds. Biodiversitas 17 (1): 275–95. DOI: 10.13057/biodiv/d170139.
Ugur MR, Abdelrahman AS, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E. 2019. Advances in cryopreservation of bull sperm. Front Vet Sci 6 (August): 1–15. DOI: 10.3389/fvets.2019.00268.
Vianello E, Kalousová M, Dozio E, Tacchini L, Zima T, Romanelli MMC. 2020. Osteopontin: the molecular bridge between fat and cardiac-renal disorders. Inter J Mol Sci 21 (15): 1–13. DOI: 10.3390/ijms21155568.
Wang T, Yin Q, Ma X, Tong MH, Zhou Y. 2018. Ccdc87 is critical for sperm function and male fertility. Biol Reprod 99 (4): 817–27. DOI: 10.1093/biolre/ioy106/4992296.
WillforssJ, Morrell JM, Resjö S, Hallap T, Padrik P, Siino V, de Koning DJ, Andreasson E, Levander F, Humblot P. 2021. Stable bull fertility protein markers in seminal plasma. J Proteom 236 (January). DOI: 10.1016/j.jprot.2021.104135.
Yang S, Berdine G. 2017. The receiver operating characteristic (ROC) curve. Southwest respir crit care chron 5 (19): 34. DOI:10.12746/swrccc.v5i19.391.
Yoon JW, Lee SE, Kim WJ, Kim DC, Hyun CH, Lee SJ, Park HJ, Kim SH, Oh SH, Lee DG, Pyeon DB, Kim EY, Park SP. 2022. Evaluation of semen quality of jeju black cattle (jbc) to select bulls optimal for breeding and establish freezing conditions suitable for JBC sperm. Animals 12 (5): 1–12. DOI: 10.3390/ani12050535.
Zelpina E, Rosadi B, Sumarsono T. 2012. Kualitas spermatozoa post thawing dari semen beku sapi perah. J Ilmu Pet Univ Jambi XV (2): 86–94. DOI: /10.22437/jiiip.v15i2.1796.
Zuhri MS, Ihsan MN, Isnaini N. 2019. Evaluation of the reproductive performance of Madura cattle raised by small scale farmers in Madura, Indonesia. Livest Res Rural Dev 31 (5): 1–5.

Most read articles by the same author(s)