Morphological characteristic of dengue vectors Aedes aegypti and Ae. albopictus (Family: Culicidae) using advanced light and scanning electron microscope

##plugins.themes.bootstrap3.article.main##

SUPRIYONO
SUSI SOVIANA
MUHAMMAD FALIKHUL MUSYAFFA
DIMAS NOVIANTO
UPIK KESUMAWATI HADI

Abstract

Abstract. Supriyono, Soviana S, Musyaffa MF, Novianto D, Hadi UK. 2023. Morphological characteristic of dengue vectors Aedes aegypti and Ae. albopictus (Family: Culicidae) using advanced light and scanning electron microscope. Biodiversitas 24: 894-900. Dengue infection is still a major public health problem in Indonesia, with Aedes aegypti and Aedes albopictus as vectors. This study aims to determine the description characteristics of these mosquitoes using an advanced light microscope and scanning electron microscope (SEM). The adult mosquitoes of Ae. aegypti and Ae. albopictus were collected from Darmaga, Bogor, in 2021. Ae. aegypti has a brown to dark body color with sub median white line like a lyre-shaped on the mesonotum, dark proboscis, a white knee spot on the femora, mid femur with a longitudinal white stripe, and mesepimeron with two well-separated white scale patches. Ae. albopictus has dark body color, dark proboscis, white strip on the middle of mesonotum, and not separated white scale patches on the mesepimeron and mid femur without a longitudinal white stripe. SEM showed the characteristic microstructure of Ae. aegypti and Ae. albopictus did not have a significant difference. Several sensory organs, namely funiculus, microtrichia, and trichoidea, are distributed on the proboscis, palps, and antennae. Microtrichia is spread almost all over the body, especially the palps, proboscis, thorax, and abdomen. This research is important for basic information to develop effective and efficient mosquito vector control strategies.

##plugins.themes.bootstrap3.article.details##

References
Câmara DCP, Pinel CDS, Rocha GP, Codeço CT, Honório NA. 2020. Diversity of mosquito (diptera: culicidae) vectors in a heterogeneous landscape endemic for arboviruses. Acta Trop. 212:105715. DOI: 10.1016/j.actatropica.2020.105715.
Bethany LMG, C Roxanne C. 2021. A Review of the Control of Aedes aegypti (Diptera: Culicidae) in the Continental United States, J Med Entomol. 58:10–25. DOI: org/10.1093/jme/tjaa157.
Diouf B, Dia I, Sene NM, Ndiaye EH, Diallo M, Diallo D. 2020. Morphology and taxonomic status of Aedes aegypti populations across Senegal. PLoS One. 15(11): e0242576. DOI: 10.1371/journal.pone.0242576.
Kumar P, Kalimuthu M, Kumar M, Govindrajan R, Venkatesh A, Paramasivan R, Ashwani K, Gupta B. 2022. Morphological and molecular characterization of Aedes aegypti variant collected from Tamil Nadu, India. J Vector Borne Dis. 2022. 59 (1): 22-28. DOI: 10.4103/0972-9062.331413.
Liu-Helmersson J, Brännström Å, Sewe MO, Semenza JC, Rocklöv J. 2019. Estimating Past, Present, and Future Trends in the Global Distribution and Abundance of the Arbovirus Vector Aedes aegypti Under Climate Change Scenarios. Front. Public Health 7:148. DOI: 10.3389/fpubh.2019.00148.
McClelland GAH. 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. ent. Soc. Land 126 (2), 239–259. https://doi.org/10.1080/00034983.1957.11685829.
Ministry of Health (MoH) RI. 2000. Kunci Bergambar untuk Aedes Dewasa. Direktorat Jenderal Pemberantasan Penyakit Menular dan Penyehatan Lingkungan. Ministry of Health, Jakarta.
Mohd Ngesom AM, Ahmad RA, Azizan NS. Ahmad NW, Lasim AM, Liang Y, Greenhalg D, Min JCS, Sahani M, Hod R, Othman H. 2021. Evaluation of a mosquito home system for controlling Aedes aegypti. Parasites Vectors 14: 413. https://doi.org/10.1186/s13071-021-04918-9
Ndenga BA, Mutuku FM, Ngugi HN, Mbakaya JO, Aswani P, Musunzaji PS, Vulule J, Mukoko D, Kitron U, LaBeaud AD. 2017. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya. PLoS One. 12:e0189971. DOI: 10.1371/journal.pone.0189971.
Nemg FBS, Abanda NN, Yonga MG, Ouapi D, Samme IE, Djoumetio MD, Endegue-Zanga MC, Demanou M, Njouom R. 2022. Sustained circulation of yellow fever virus in Cameroon: an analysis of laboratory surveillance data, 2010-2020. BMC Infect Dis. 22(1):418. DOI: 10.1186/s12879-022-07407-1.
Ong J, Aik J, Ng LC. 2021. Short Report: Adult Aedes abundance and risk of dengue transmission. PLoS Negl Trop Dis. 15(6):e0009475. DOI: 10.1371/journal.pntd.0009475.
Rahman MS, Ekalaksananan T, Zafar S, Poolphol P, Shipin O, Haque U, Paul R, Rocklöv J, Pientong C, Overgaard HJ. 2021. Ecological, Social, and Other Environmental Determinants of Dengue Vector Abundance in Urban and Rural Areas of Northeastern Thailand. Int J Environ Res Public Health. 18(11):5971. DOI: 10.3390/ijerph18115971.
Roiz D, Wilson AL, Scoot TW, Fonseca DM, Jourdain F, Muller F, Vellayudhan R, Corbel V. 2018. Integrated Aedes management for the control of Aedes borne diseases. PloS Negl Trop Dis. 12(12): e0006845.
Rueda LM. 2004. Zootaxa. Pictorial keys for the identification of mosquitoes (Diptera:Culicidae) associated with dengue virus transmission. Magnolia Press. Auckland. New Zeland 1030.
Saleh F, Kitau J, Konradsen F, Kampango A, Abassi R, Schiøler KL. 2020. Epidemic risk of arboviral diseases: Determining the habitats, spatial-temporal distribution, and abundance of immature Aedes aegypti in the Urban and Rural areas of Zanzibar, Tanzania. PLoS Negl Trop Dis.14(12): e0008949. DOI: 10.1371/journal.pntd.0008949.
Santos VSV, Limongi JE, Pereira BB. 2021. Association of low concentrations of pyriproxyfen and Spinosad as an environment-friendly strategy to rationalize Aedes aegypti control programs. Chemosphere. 247:125795.
Severini F, Boccolini D, Fortuna C, Di Luca M, Toma L, Amendola A, Benedetti E, Minelli G, Romi R, Venturi G, Rezza G, Remoli ME. 2018. Vector competence of Italian Aedes albopictus populations for the chikungunya virus (E1-226V). PLoS Negl Trop Dis. 19;12(4): e0006435. DOI: 10.1371/journal.pntd.0006435.
Suman DS, Wang Y, Faraji A, Williams GM, Williges E, Gaugler R. 2018. Seasonal field efficacy of pyriproxyfen autodissemination stations against container-inhabiting mosquito Aedes albopictus under differeny habitat conditions. Pest Manag Sci. 74(4):885–95.
Supriyono, Kuwata R, Torii S, Shimoda H, Ishijima K, Yonemitsu K, Minami S, Kuroda Y, Tatemoto K, Tran N, Takano A, Omatsu T, Mizutani T, Itokawa K, Isawa H, Sawabe K, Takasaki T, Yuliani DM, Abiyoga D, Hadi UK, Setiyono A, Hondo E, Agungpriyono S, Maeda K. 2020. Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes. The Journal of veterinary medical science, 82(7): 1030–1041.
Supriyono, Soviana S, Novianto D, Musyaffa MF, Hadi UK. 2021. Morphological characteristic of malaria vector Anopheles aconitus (Family: Culicidae) revealed by advanced light and scanning electron microscope. Biodiversitas Journal of Biological Diversity: Vol. 23 No. 7. DOI: https://doi.org/10.13057/biodiv/d230730.
Vairo F, Haider N, Kock R, Ntoumi F, Ippolito G, Zumla A. 2019. Chikungunya: Epidemiology, Pathogenesis, Clinical Features, Management, and Prevention. Infect Dis Clin North Am. 33(4):1003-1025. doi: 10.1016/j.idc.2019.08.006.
Vieira CJDSP, Thies SF, da Silva DJF, Kubiszeski JR, Barreto ES, Monteiro HAO, Mondini A, São Bernardo CS, Bronzoni RVM. 2020. Ecological aspects of potential arbovirus vectors (Diptera: Culicidae) in an urban landscape of Southern Amazon, Brazil. Acta Trop. 202:105276. DOI: 10.1016/j.actatropica.2019.105276.
Weeratunga P, Rodrigo C, Fernando SD, Rajapakse S. 2017. Control methods for Aedes albopictus and Aedes aegypti. Cochrane Database Syst Rev. 8:CD012759. DOI: 10.1002/14651858.CD012759.
World Health Organisation (WHO). 2022. Dengue and Severe Dengue. https://www.who.int/news-room/fact.

Most read articles by the same author(s)