Microalgae diversity in varying habitat characteristics in Pasuruan and Sidoarjo coastal areas, East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

MOHAMMAD MAHMUDI
SULASTRI ARSAD
https://orcid.org/0000-0002-7322-7834
FIKA FITRIANESIA
SAFRIZAL FIKRI RAMADHAN
ABDUR RAHMAN ARIF
FRIZCA RANIA SAVITRI
ADELITA ASMO DEWINTA
ANINDYA DIVANATA ONGKOSONGO
MUHAMMAD MUSA
EVELLIN DEWI LUSIANA

Abstract

Abstract. Mahmudi M, Arsad S, Fitrianesia F, Ramadhan SF, Arif AR, Savitri FR, Dewinta AA, Ongkosongo AD, Musa M, Lusiana ED. 2023. Microalgae diversity in varying habitat characteristics in Pasuruan and Sidoarjo coastal areas, East Java, Indonesia. Biodiversitas 24: 4418-4426. Microalgae are microscopic eukaryotic organisms which live in various types of habitats. The purpose of this study was to identify the types and the abundance of microalgae in several sub-habitats, namely sediments, mangroves, water columns, and artificial substrates; and to analyze the environmental factors that affect the abundance of microalgae. The research was conducted in several sites in the coastal areas in Pasuruan and Sidoarjo, East Java, Indonesia. A quantitative descriptive method was applied with data collection used a purposive sampling method. Samples were collected using net for planktonic microalgae and using sampling plot for epiphytic and benthic microalgae. The microalgae were grouped using NMDS (non-metric multidimensional scaling) and the relationships between microalgae abundance and water quality parameters were analyzed using CCA (canonical correspondence analysis). The results show that Bacillariophyceae, Cyanophyceae, and Chlorophyceae classes were found in all study sites, but Trebouxiophyceae and Dinophyceae were only found in Pasuruan Beach. The highest abundance of microalgae was found in sediment habitat in Wughoyo Beach, Sidoarjo with 706,605 ind. cm-2. The diversity, the evenness, and the dominance index in both coastal areas ranged from 1.43-2.61; 0.71-0.96; and 0.06-0.27, respectively. Similarity analysis using the NMDS showed that there was no similarity among the three sites, suggesting each site had high microalgal variation. The CCA analysis showed that Bacillariophyceae were found in all sites, indicating its high adaptability. The results of this analysis imply that particular habitat has a unique microalgae diversity, thus preserving diverse habitat types is important.

##plugins.themes.bootstrap3.article.details##

References
Ameilda. C. H.. Dewiyanti. I.. & Octavina. C. (2016). Community structure in macroalgae Ulva lactuca perifiton in Coastal Waters Ulee Lheue. Banda Aceh. Jurnal Ilmiah Mahasiswa Kelautan dan Perikanan Unsyiah. 1(3). 337-347.
Arora. N.. Patel. A.. Sharma. M.. Mehtani. J.. Pruthi. P. A.. Pruthi. V.. & Poluri. K. M. (2017). Insights into the enhanced lipid production characteristics of a fresh water microalga under high salinity conditions. Industrial & Engineering Chemistry Research. 56(25). 7413-7421. DOI : https://doi.org/10.1021/acs.iecr.7b00841
Arsad. S.. Mulasari. Y. W.. Sari. N. Y.. Lusiana. E. D.. Risjani. Y.. Musa. M.. ... & Sari. L. A. (2022). Microalgae diversity in several different sub-habitats. Global Journal of Environmental Science and Management. 8(4). 561-574. DOI : 0.22034/GJESM.2022.04.08.
Arsad. S.. Putra. K. T.. Latifah. N.. Kadim. M. K.. & Musa. M. (2021). Epiphytic microalgae community as aquatic bioindicator in Brantas River. East Java. Indonesia. Biodiversitas Journal of Biological Diversity. 22(7). DOI : https://doi.org/10.13057/biodiv/d220749.
Arsad. S.. Zsalzsabil. N. A. N.. Prasetiya. F. S.. Safitri. I.. Saputra. D. K.. & Musa. M. (2019). Microalga peryphyton community on different substrates and its role as aquatic environmental bioindicator. Saintek Perikanan. 15(1). 73-79. DOI : https://doi.org/10.14710/ijfst.15.1.73-79.
Aulia. A. E.. Maimunah. Y.. & Suprastyani. H. (2021). Penggunaan ekstrak daun lamtoro (Leucaena Leucocephala) sebagai pupuk dengan salinitas yang berbeda terhadap laju pertumbuhan. biomassa dan klorofil-a pada mikroalga Chlorella vulgaris. JFMR (Journal of Fisheries and Marine Research). 5(1). 47-55. http://dx.doi.org/10.21776/ub.jfmr.2021.005.01.8. [Indonesian].
Benni. Husein Siregar. S.. & Nurachmi. I. (2020). Effect of particle sizes and content of organic matter sediment on epipelic diatom abundance in Bayur Bay Waters of West Sumatera. Asian Journal of Aquatic Sciences. 3(1). 49–59. DOI : https://doi.org/10.31258/ajoas.3.1.49-59.
Bhushan. S.. Kalra. A.. Simsek. H.. Kumar. G.. & Prajapati. S. K. (2020). Current trends and prospects in microalgae-based bioenergy production. Journal of Environmental Chemical Engineering. 8(5). 104025. DOI : https://doi.org/10.1016/j.jece.2020.104025.
Boyd. C. E. (1979). Water Quality in Warmwater Fish Pound. Aubum University Agricultural Experiment Station. Auburn. USA.
Cruz-Ramírez. A. K.. Salcedo. M. Á.. Sánchez. A. J.. Barba Macías. E.. & Mendoza Palacios. J. D. (2019). Relationship among physicochemical conditions. chlorophyll-a concentration. and water level in a tropical river–floodplain system. International journal of environmental science and technology. 16(7). 3869-3876. DOI : https://doi.org/10.1016/j.rmb.2016.10.021.
Dayana. M. E.. Singkam. A. R dan Jumiarno. D. (2022). Keanekaragaman mikroalga sebagai bioindikator di perairan sungai. Jurnal Pendidikan Biologi dan Sains. 5(1). 77-84. DOI : https://doi.org/10.31539/bioedusains.v5i1.3531. [Indonesian].
Dionfriski. A.. Siregar. S. H dan Nurrachmi. I. (2021). Epipelic diatom community structure in the intertidal zone Mengkapan Waters. Sungai Apit District. Siak Regency. Journal of Coastal and Ocean Sciences. 2(3). 207-216. DOI : https://doi.org/10.31258/jocos.2.3.207-216.
Fadliyah, S., Sari, L. A., Pursetyo, K. T., Zein, A., Idris, M. H., & Cahyoko, Y. (2021). The Variability in Population Structure of Gastropods in Sedati Waters, Sidoarjo Regency, East Java. In IOP Conference Series: Earth and Environmental Science (Vol. 679, No. 1, p. 012074). IOP Publishing.
Firmaningrum, N. F., Sari, L. A., Pursetyo, K. T., Zein, A., Idris, M. H., & Cahyoko, Y. (2021). Biodiversity studies of echinoderms in Sedati waters, Sidoarjo District, East Java Province. In IOP Conference Series: Earth and Environmental Science (Vol. 718, No. 1, p. 012089). IOP Publishing.
Gunawan. E. A.. A. Agussalim dan H. Surbakti. (2019). Pemetaan Sebaran Klorofil-a Menggunakan Citra Satelit Landsat Multitemporal di Teluk Lampung Provinsi Lampung. MASPARI Journal. 11(2) : 49-58. DOI : https://doi.org/10.56064/maspari.v11i2.9467. [Indonesian].
Gurning. L. F. P.. Nuraini. R. A. T.. & Suryono. S. (2020). Kelimpahan fitoplankton penyebab harmful algal bloom di Perairan Desa Bedono. Demak. Journal of Marine Research. 9(3). 251-260. DOI : https://doi.org/10.14710/jmr.v9i3.27483. [Indonesian].
Harmoko. H.. Lokaria. E.. & Misra. S. (2017). Eksplorasi mikroalga di Air Terjun Watervang Kota Lubuklinggau. Bioedukasi (Jurnal Pendidikan Biologi). 8(1). 75-82. DOI : http://dx.doi.org/10.24127/bioedukasi.v8i1.840. [Indonesian].
Hawrot-Paw. M.. Koniuszy. A.. Ga?czy?ska. M.. Zaj?c. G.. & Szyszlak-Barg?owicz. J. (2019). Production of microalgal biomass using aquaculture wastewater as growth medium. Water. 12(1). 106. DOI : https://doi.org/10.3390/w12010106.
Hopes. A dan Mock. T. (2015). Evolution of microalgae and their adaptations in different marine ecosystems. Marine Microbiology. 1-10. DOI : 0.1002/9780470015902.a0023744.
Hughes. D. J.. Campbell. D. A.. Doblin. M. A.. Kromkamp. J. C.. Lawrenz. E.. Moore. C. M.. ... & Suggett. D. J. (2018). Roadmaps and detours: active chlorophyll-a assessments of primary productivity across marine and freshwater systems. Environmental science & technology. 52(21). 12039-12054. DOI : 10.1021/acs.est.8b03488
Jeanneret. R.. Pushkin. D. O.. Kantsler. V.. & Polin. M. (2016). Entrainment dominates the interaction of microalgae with micron-sized objects. Nature communications. 7(1). 1-7. DOI : https://doi.org/10.1038/ncomms12518.
Jin. P.. & Agustí. S. (2018). Fast adaptation of tropical diatoms to increased warming with trade-offs. Scientific reports. 8(1). 1-10. DOI : 10.1038/ncomms12518.
Kale. A.. & Karthick. B. (2015). The diatoms. Resonance. 20(10). 919-930. DOI : https://doi.org/10.1007/s12045-015-0256-6
Kennish. M. J. (2019). Ecology of Estuaries: Volume 1: Physical and Chemical Aspects. CRC press.
Kim. B. H.. Choi. J. E.. Cho. K.. Kang. Z.. Ramanan. R.. Moon. D. G.. & Kim. H. S. (2018). Influence of water depth on microalgal production. biomass harvest. and energy consumption in high rate algal pond using municipal wastewater. DOI : https://doi.org/10.4014/jmb.1801.01014.
Lauritano. C.. Rizzo. C.. Lo Giudice. A.. & Saggiomo. M. (2020). Physiological and molecular responses to main environmental stressors of microalgae and bacteria in polar marine environments. Microorganisms. 8(12). 1957. DOI : https://doi.org/10.3390/microorganisms8121957
Li. A.. Zhao. X.. Anderson. S.. & Zhang. X. (2018). Silica nanowire growth on coscinodiscus species diatom frustules via vapor–liquid–solid process. Small. 14(47). 1801822. DOI : https://doi.org/10.1002/smll.201801822
Liao. Y.. Jiang. X.. Xiao. Y.. & Li. M. (2020). Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: Perspective from the physiological and transcriptional responses. Aquatic Toxicology. 228. 105650. DOI : https://doi.org/10.1016/j.aquatox.2020.105650
Lim. Y. K.. Phang. S. M.. Abdul Rahman. N.. Sturges. W. T.. & Malin. G. (2017). Halocarbon emissions from marine phytoplankton and climate change. International journal of environmental science and technology. 14(6). 1355-1370. DOI : 10.1007/s13762-016-1219-5
Ludwig JA. Reynolds JF. (1988). Statistical Ecology A Primer on Methods and Computing. A Wiley Interscience Publication. Canada
Mahmudi. M.. Lusiana. E. D.. Herawati. E. Y.. & Serihollo. L. G. (2020). Environmental factors and seasonal effect on the potential harmful algae presence at Ambon Bay. Indonesia. Biodiversitas Journal of Biological Diversity. 21(7). 3101-3107. DOI : https://doi.org/10.13057/biodiv/d210730
Marella. T. K.. López-Pacheco. I. Y.. Parra-Saldívar. R.. Dixit. S.. & Tiwari. A. (2020). Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Science of the Total Environment. 724. 137960. DOI : https://doi.org/10.1016/j.scitotenv.2020.137960.
Masouras. A.. Karaouzas. I.. Dimitriou. E.. Tsirtsis. G.. & Smeti. E. (2021). Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. Water. 13(4). 478. DOI : https://doi.org/10.3390/w13040478.
Mohrholz. V.. Naumann. M.. Nausch. G.. Krüger. S.. & Gräwe. U. (2015). Fresh oxygen for the Baltic Sea—An exceptional saline inflow after a decade of stagnation. Journal of Marine Systems. 148. 152-166. DOI : https://doi.org/10.1016/j.jmarsys.2015.03.005.
Nasution. A.. Widyorini. N.. & Purwanti. F. (2019). Relationship analysis of phytoplankton abundance to nitrate and phosphate in the Morosari Waters. Demak. Management of Aquatic Resources Journal. 8(2). 78-86. DOI : https://doi.org/10.14710/marj.v8i2.24230
Nava. V.. & Leoni. B. (2021). A critical review of interactions between microplastics. microalgae and aquatic ecosystem function. Water research. 188. 116476. DOI : https://doi.org/10.1016/j.watres.2020.116476.
Nindarwi, D. D. (2019). Study of Calcium Hydroxide (Ca (OH) 2) and Sodium Bicarbonate (NaHCO3) Treatment Through The Dynamics of pH, COD, N/P Ratio Value and Plankton Abundance. Journal of Aquaculture and Fish Health, 8(2), 72-79.
O'Neill. E. A.. & Rowan. N. J. (2022). Microalgae as a natural ecological bioindicator for the simple real-time monitoring of aquaculture wastewater quality including provision for assessing impact of extremes in climate variance–A comparative case study from the Republic of Ireland. Science of the Total Environment. 802. 149800. DOI : https://doi.org/10.1016/j.scitotenv.2021.149800.
Paris. A.. Kwaoga. A.. & Hewavitharane. C. (2022). An assessment of floating marine debris within the breakwaters of the University of the South Pacific. Marine Studies Campus at Laucala Bay. Marine Pollution Bulletin. 174. 113290. DOI : https://doi.org/10.1016/j.marpolbul.2021.113290.
Patty. S. I. (2013). Distribution temperature. salinity and dissolved oxygen in Waters Kema. North Sulawesi. Jurnal Ilmiah Platax. 1(3). 148-157. DOI : https://doi.org/10.35800/jip.1.3.2013.2580
Patty. S. I.. Arfah. H.. & Abdul. M. S. (2015). Nutriens (phosphate. nitrate). dissolved oxygen. and dissolved ph and they relation to productivity of Jikumerasa Waters. Buru Island. Jurnal Pesisir dan Laut Tropis. 3(1). 43-50. DOI : https://doi.org/10.35800/jplt.3.1.2015.9578
Rahman. A.. Pratiwi. N. T. M.. & Hariyadi. S. (2016). The structure of phytoplankton communities in Lake Toba. North Sumatera. Jurnal Ilmu Pertanian Indonesia. 21(2). 120-127. DOI : https://doi.org/10.18343/jipi.21.2.120
Rasmiati. E.. Nedi. S dan Amin. B. (2019). Analysis of Total Organic Matter and Fitoplankton Abundance in the Dumai River Estuary Waters of Riau Province. DISS. 1-8. DOI : https://doi.org/10.31258/ajoas.4.1.1-12
Ravindran. B.. Gupta. S. K.. Cho. W. M.. Kim. J. K.. Lee. S. R.. Jeong. K. H.. ... & Choi. H. C. (2016). Microalgae potential and multiple roles—current progress and future prospects—an overview. Sustainability. 8(12). 1215. DOI : https://doi.org/10.3390/su8121215.
Renny. D. P.. Djuwito dan Irwani. (2016). Pengaruh Kandungan Nitrat dan Fosfat Terhadap Kelimpahan di Muara Sungai Wulan. Demak. Diponegoro Journal of Maquares. 5(4) : 224-232. DOI : https://doi.org/10.14710/marj.v5i4.14411. [Indonesian].
Righetti. D.. Vogt. M.. Zimmermann. N. E.. Guiry. M. D.. & Gruber. N. (2020). PhytoBase: a global synthesis of open-ocean phytoplankton occurrences. Earth System Science Data. 12(2). 907-933. DOI : https://doi.org/10.5194/essd-12-907-2020.
Rizqina. C.. Sulardiono. B.. & Djunaedi. A. (2017). Hubungan antara kandungan nitrat dan fosfat dengan kelimpahan fitoplankton di Perairan Pulau Pari. Kepulauan Seribu. Management of Aquatic Resources Journal. 6(1). 43-50. https://doi.org/10.14710/marj.v6i1.19809. [Indonesian].
Rösch. C.. Roßmann. M.. & Weickert. S. (2019). Microalgae for integrated food and fuel production. Gcb Bioenergy. 11(1). 326-334. DOI : https://doi.org/10.1111/gcbb.12579.
Roshith. C. M.. Meena. D. K.. Manna. R. K.. Sahoo. A. K.. Swain. H. S.. Raman. R. K.. ... & Das. B. K. (2018). Phytoplankton community structure of the Gangetic (Hooghly-Matla) estuary: Status and ecological implications in relation to eco-climatic variability. Flora. 240. 133-143. DOI : https://doi.org/10.1016/j.flora.2018.01.001.
Salahi T. Pourbabaei H. Salahi M. Karamzadeh S. 2017. An investigation on plant species composition and diversity in the coniferous and broadleaved plantations: Case study of Bibi Yanlu Forest Park. Astara. Iran. Biodiversitas 18 (3): 958-963. DOI: 10.13057/biodiv/d180313.
Sandeep. K. P.. KumaraguruVasangam. K. P.. Kumararaja. P.. Syama Dayal. J.. Sreekanth. G. B.. Ambasankar. K.. & Vijayan. K. K. (2019). Microalgal diversity of a tropical estuary in south India with special reference to isolation of potential species for aquaculture. Journal of Coastal Conservation. 23(1). 253-267. DOI : https://doi.org/10.1016/j.chemosphere.2016.10.109.
Sanz. J. L.. Rojas. P.. Morato. A.. Mendez. L.. Ballesteros. M.. & González-Fernández. C. (2017). Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere. 168. 1013-1021. DOI : https://doi.org/10.1016/j.chemosphere.2016.10.109.
Sari, L. A., Pursetyo, K. T., Arsad, S., Masithah, E. D., Setiawan, E., & Affandi, M. (2019a). The effect of nutrient abundance on distribution of cyanobacteria and chlorophyll-a in sedati water, Sidoarjo. Pollution Research, 38(August), S38-S43.
Sari, L. A., Sari, P. D. W., Nindarwi, D. D., Arsad, S., & Affandi, M. (2019b). Harmful algae identification in bomo water environment, banyuwangi, east java, Indonesia. Ecology, Environment and Conservation, 25, S26-S31.
Schilling. K. E.. Streeter. M. T.. Isenhart. T. M.. Beck. W. J.. Tomer. M. D.. Cole. K. J.. & Kovar. J. L. (2018). Distribution and mass of groundwater orthophosphorus in an agricultural watershed. Science of the Total Environment. 625. 1330-1340. DOI : https://doi.org/10.1016/j.scitotenv.2018.01.035.
Selviana. D.. Harmoko. & Arisandi. D. A. (2021). Keanekaragaman mikroalga di Bendungan Barata Desa Wonokerto Kabupaten Musi Rawas. Jurnal Biologi dan Pembelajarannya. 8(2). 112-120. http://dx.doi.org/10.25273/florea.v8i2.9746. [Indonesian].
Sidabutar. H. B.. Hasbi. M dan Budijono. (2016). The effectiveness of tofu liquid waste for growing Chlorella sp. Jurnal Online Mahasiswa Fakultas Perikanan dan Ilmu Kelautan Universitas Riau. 3. 1-8. DOI : http://jom.unri.ac.id/index.php/JOMFAPERIKA/article/view/11297.
Siddiki. S. Y. A.. Mofijur. M.. Kumar. P. S.. Ahmed. S. F.. Inayat. A.. Kusumo. F.. ... & Mahlia. T. M. I. (2022). Microalgae biomass as a sustainable source for biofuel. biochemical and biobased value-added products: An integrated biorefinery concept. Fuel. 307. 121782. DOI : https://doi.org/10.1016/j.fuel.2021.121782.
Simmonds. B.. Wood. S. A.. Özkundakci. D.. & Hamilton. D. P. (2015). Phytoplankton succession and the formation of a deep chlorophyll maximum in a hypertrophic volcanic lake. Hydrobiologia. 745(1). 297-312. DOI : https://doi.org/10.1007/s10750-014-2114-z.
Singh. J.. & Saxena. R. C. (2015). An introduction to microalgae: diversity and significance. In Handbook of marine microalgae (pp. 11-24). Academic Press.
Sirait. M.. Rahmatia. F.. & Pattulloh. P. (2018). Comparison of diversity index and dominant index of phytoplankton at Ciliwung River Jakarta. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology. 11(1). 75-79. https://doi.org/10.21107/jk.v11i1.3338
Siregar. L. L.. Hutabarat. S.. & Muskananfola. M. R. (2014). Distribusi fitoplankton berdasarkan waktu dan kedalaman yang berbeda di Perairan Pulau Menjangan Kecil Karimunjawa. Management of Aquatic Resources Journal. 3(4). 9-14. https://doi.org/10.14710/marj.v3i4.7026. [Indonesian].
Sitindoan. B. M. K.. Siregar. S. H.. & Nurrachmi. I. (2020). Effect of particle sizes and content of organic matter sediment on epipelic diatom abundance in Bayur Bay Waters of West Sumatera. Asian Journal of Aquatic Sciences. 3(1). 49-59. DOI: https://doi.org/10.31258/ajoas.3.1.49-59.
Sohrabi. M.. Mahzari. P.. Farzaneh. S. A.. Mills. J. R.. Tsolis. P.. & Ireland. S. (2017). Novel insights into mechanisms of oil recovery by use of low-salinity-water injection. Spe Journal. 22(02). 407-416. Doi : https://doi.org/10.2118/172778-PA.
Sumiarsih. E.. Aryani. N.. Warningsih. T.. Mulyani. I.. & Hasibuan. I. F. (2020). Plankton Community Structure in PLTA Koto Panjang Reservoir. Kampar District. Riau Province. In IOP Conference Series: Earth and Environmental Science (Vol. 430. No. 1. p. 012036). IOP Publishing. doi:10.1088/1755-1315/430/1/012036.
Tang. J.. Liang. Q.. Li. C.. Huang. X.. Xian. X.. Li. J.. ... & Zhang. R. (2022). Application of Marine Algae in Water Pollution Control. In IOP Conference Series: Earth and Environmental Science (Vol. 966. No. 1. p. 012001). IOP Publishing. doi:10.1088/1755-1315/966/1/01200
Triawan. A. C. & Arisandi. A. (2020). Struktur komunitas fitoplankton di perairan muara dan laut Desa Kramat Kecamatan Bangkalan Kabupaten Bangkalan. Juvenil. 1(1). 97-110. DOI : https://doi.org/10.21107/juvenil.v1i1.6867. Indonesian].
Ulfah M. Fajri SN. Naisr M. Hamsah K. Purnawan S. 2019. Diversity. evenness and dominance index reef fish in Krueng Raya Water Aceh Besar. IOP Conf Ser: Earth Environ Sci 348: 012074. DOI 10.1088/1755-1315/348/1/012074
Vernanda, O., Sari, L. A., Cahyoko, Y., Arsad, S., Pursetyo, K. T., Dewi, N. N., & Mustafa, S. (2022). Correlation of Environmental Factors With Population of Horseshoe Crab (Tachypleus gigas) in Sedati Waters, Sidoarjo District. International Journal on Advanced Science, Engineering and Information Technology, 12(2), 826-833.
Wahyudi. A. J.. Hernawan. U. E.. Fitriyah. N. (2017). Ekspedisi widya nusantara. http://oseanografi.lipi.go.id/laporan/Laporan akhir Kegiatan EWIN 2017.pdf. [Indonesian].
Xie. Y.. Khoo. K. S.. Chew. K. W.. Devadas. V. V.. Phang. S. J.. Lim. H. R.. ... & Show. P. L. (2022). Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresource Technology. 363. 127830. DOI : https://doi.org/10.1016/j.biortech.2022.127830.
Zakiyah, U., Suwanti, L. T., Koerniawan, M. D., Suyono, E. A., Budiman, A., & Siregar, U. J. (2020). Diversity and distribution of microalgae in coastal areas of East Java, Indonesia. Biodiversitas, 21(3), 1149-1159.
Zhang. X.. Chua. V. P.. & Cheong. H. F. (2015). Hydrodynamics in mangrove prop roots and their physical properties. Journal of hydro-environment research. 9(2). 281-294. DOI : https://doi.org/10.1016/j.jher.2014.07.010.
Zhu. L. (2015). Microalgal culture strategies for biofuel production: a review. Biofuels. Bioproducts and Biorefining. 9(6). 801-814. DOI : https://doi.org/10.1002/bbb.1576

Most read articles by the same author(s)