Characterization and virulence of two indigenous entomopathogenic fungal isolates from decayed oil palm empty fruit bunches against Spodoptera litura (Lepidoptera: Noctuidae)

##plugins.themes.bootstrap3.article.main##

ABDUL SAHID
PINTAKA KUSUMANINGTYAS

Abstract

Abstract. Kusumaningtyas P. 2023. Characterization and virulence of two indigenous entomopathogenic fungal isolates from decayed oil palm empty fruit bunches against Spodoptera litura (Lepidoptera: Noctuidae). Biodiversitas 24: 1192-1199. The objective of this study was to characterize (morpho-molecular characterization and lignocellulolytic activity) and evaluate the virulence of two indigenous EPF isolates from decayed oil palm empty fruit bunched (OPEFB) against the common cutworm Spodoptera litura Fabr. (Lepidoptera: Noctuidae) under laboratory conditions. The fungi were isolated from OPEFB samples collected from oil palm plantations in Indonesia, and were identified as Fusarium keratoplasticum (isolate TKKS-1) and Metarhizium anisopliae (isolate TKKS-2). Both fungal isolates were tested for their pathogenicity against the 3rd instar larvae of Spodoptera litura Fabr. at the concentration of 1 × 106 conidia/mL. Both fungal isolates showed 100% mortality rate after 7 days of application. Virulence of the EPF isolates against the 3rd instar of S. litura larvae was estimated based on the LC50 values calculated using probit regression analysis. The LC50 values of M. anisopliae and F. keratoplasticum isolates were 1.41 × 105 and 1.02 × 106 conidia/mL, respectively. The LT50 at the concentration of 1 × 106 conidia/mL was 3.82 days for F. keratoplasticum and 3.52 days for M. anisopliae. M. anisopliae showed cellulolytic activity, while F. keratoplasticum exhibited ligninolytic activity. This finding suggests that two EPFs isolated from OPEFBs were highly virulent against S. litura larvae and potential decomposers for lignocellulose. These characteristics indicated significant biocontrol and decomposing properties of lignocellulose waste.

##plugins.themes.bootstrap3.article.details##

References
Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18(2): 265–267.
Aktar W, Sengupta D, Chowdhury A. 2009. Impact of pesticides use in agriculture?: their benefits and hazards 2(1): 1–12. DOI: 10.2478/v10102-009-0001-7.
Anand R, Tiwary BN. 2009. Pathogenicity of entomopathogenic fungi to eggs and larvae of Spodoptera litura, the common cutworm. Journal Biocontrol Science and Technology 19(9): 919–929.
Asi MR, Bashir MH, Afzal M, Zia K, Akram M. 2013. Potential of entomopathogenic fungi for biocontrol of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). J Anim Plant Sci. 23: 913–918.
Barnett H, Hunter B. 1972. Illustrated Genera of Imperfect Fungi (3rd ed.). Burgess Publishing Company, Minneapolis, pp214.
Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Malumphy C, … MacLeod A. 2019. Pest categorisation of Spodoptera litura. EFSA Journal 17(7). DOI: 10.2903/j.efsa.2019.5765.
Chattopadhyay P, Banerjee G, Mukherjee S. 2017. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech 7(1): 1–11. DOI: 10.1007/s13205-017-0717-6
Chehri K. 2017. Molecular identification of entomopathogenic Fusarium sepcies associated with Tribolium species in stred grains. Journal of Invertebrate Pathology 144: 1–6.
Gul HT, Saeed S, Khan FZA. 2015. Entomopathogenic Fungi as Effective Insect Pest Management Tactic: A Review. Applied Sciences and Business Economics 1(1): 10–18.
Guo Z, Pfohl K, Karlovsky P, Dehne HW, Altincicek B. (2018). Dissemination of Fusarium proliferatum by mealworm beetle Tenebrio molitor. PLoS ONE 13(9).
Herlinda S, Octariati N, Suwandi S, Hasbi. 2020. Exploring entomopathogenic fungi from south sumatra (Indonesia) soil and their pathogenicity against a new invasive maize pest, spodoptera frugiperda. Biodiversitas 21(7): 2955–2965. DOI: 10.13057/biodiv/d210711.
Hu X, Xiao G, Zheng P, Shang Y, Su Y, Zhang X, Liu X, Zhan S, St Leger RJ, Wang C. 2014. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc. Natl. Acad. Sci. USA 111(47): 16796-16801. DOI: 10.1073/pnas.1412662111.
Jiang W, Peng Y, Ye J, Wen J, Liu G, Xie J. 2020. Effects of the Entomopathogenic Fungus Metarhizium anisopliae on the Mortality and Immune Response of Locusta migratoria. Insects 11(36): 1–12. DOI: 10.3390/insects11010036.
Kalidas P. 2012. Pest Problems of Oil Palm and Management Strategies for Sustainability. Agrotechnology S11: 001. DOI: 10.4172/2168-9881.1000S11-002.
Khan S, Guo L, Maimaiti Y, Mijit M, Qiu D. 2012. Entomopathogenic fungi as microbial biocontrol agent. Molecular Plant Breeding 3(7): 63–79.
Kusumaningtyas P, Candra KP, Sahid A. 2022. Changes in microbial community structure and diversity during decomposition of oil palm empty fruit bunches at different decomposition sites in humid tropical oil palm plantation. Agriculture and Natural Resources 56(3): 511–524. DOI: 10.34044/j.anres.2022.56.3.08.
Mahgoub SA, Kedra EGA, Abdelfattah HI, Abdelbasit HM, Alamoudi SA, Al-Quwaie DA, Selim S, Alsharari SS, Saber WIA, El-Mekkawy RM. 2022. Bioconversion of Some Agro-Residues into Organic Acids by Cellulolytic Rock-Phosphate-Solubilizing Aspergillus japonicus. Fermentation 8(9): 1–16. DOI: 10.3390/fermentation8090437
Maina UM, Galadima IB, Gambo FM, Zakaria D. 2017. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomophatogenic and Zoology Studies 6(1): 27–32.
Mannino MC, Huarte-Bonnet C, Davyt-Colo B, Pedrini N. 2019. Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. Journal of Fungi 5(2). DOI: 10.3390/jof5020033.
McGuire AV, Northfield TD. 2020. Tropical Occurrence and Agricultural Importance of Beauveria bassiana and Metarhizium anisopliae. Frontiers in Sustainable Food Systems, 4(January). DOI: 10.3389/fsufs.2020.00006
Nelly N, Syahrawati My, Hamid H, Habazar T, Gusnia DN. 2019. Diversity and characterization of entomopathogenic fungi from rhizosphere of maize plants as potential biological control agents. Biodiversitas 20(5): 1435–1441. DOI: 10.13057/biodiv/d200536.
Niu X, Xie W, Zhang J, Hu Q. 2019. Biodiversity of Entomopathogenic Fungi in the Soils of South China. Microorganisms 7(9): 311. DOI: 10.3390/microorganisms7090311.
Papizadeh M, van Diepeningen AD, Zamanizadeh HR, Saba FRH. 2018. Fusarium ershadiisp. nov., a Pathogen on Asparagus officinalis and Musa acuminate. Eur J Plant Pathol. 151(3): 689–701. DOI: 10.1007/s10658-017-1403-6.
Pathak M, Khan Z. 1994. Insect Pests of Rice. International Rice Research Institute.
Quesada-Moraga E, Navas-Cortes JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Alvarez C. 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research III, 947–966. DOI: 10.1016/j.mycres.2007.06.006.
Robles-Acosta IN, Chacon-Hernandez JC, Torres-Acosta RI, Landeros-Flores J, Vanoye-Eligio V, Arrendondo-Valvades R. 2019. Entomopathogenic fungi as biological control agents of Phyllocoptruta oleivora (Prostigmata: Eriophyidae) under greenhouse conditions. Florida Entomologist 102(2): 303–308. DOI: 10.1653/024.102.0203.
Safitri A, Herlinda S, Setiawan A. 2018. Entomopathogenic fungi of soils of freshwater swamps, tidal lowlands, peatlands, and highlands of south sumatra, Indonesia. Biodiversitas, 19(6), 2365–2373. DOI: 10.13057/biodiv/d190647
Sahadevan LDM, Misra CS, Thankamani V. 2016. Characterization of lignin-degrading enzymes (LDEs) from a dimorphic novel fungus and identification of products of enzymatic breakdown of lignin. Biotech. 6(1), 56. DOI: 10.1007/s13205-016-0384-z.
Samada L, Tambunan US. 2020. Biopesticides as Promising Alternatives to Chemical Pesticides?: A Review of Their Current and Future Status. Online Journal of Biological Sciences, 20(2), 66–76. DOI: 10.3844/ojbsci.2020.66.76
Sapareng S, Ala A, Kuswinanti T, Rasyid B. 2017. The role of rot fungi in composting process of empty fruit bunches of oil palm. Int. J. Curr. Res. Biosci.Plant Biol., 4(3), 17–22.
Sayed SM, Ali EF, El-Arnaouty SA, Mahmoud SF, Amer SA. 2018. Isolation, identification, and molecular diversity of indigenous isolates of Beauveria bassiana from Taif region, Saudi Arabia. Egyptian Journal of Biological Pest Control, 28(1). DOI: 10.1186/s41938-018-0054-z
Shahriari M, Zibaee A, Khodaparast SA, Fazeli-Dinan M. 2021. Screening and virulence of the entomopathogenic fungi associated with chilo suppressalis walker. Journal of Fungi, 7(1), 1–19. DOI: 10.3390/jof7010034
Shahriarinoor M, Wahab MNA, Ariff A, Mohamad R. (2011). Screening, isolation, and selection of cellulolytic fungi from oil palm empty fruit bunch fibre. Biotechnology, 10(1), 108–113.
Shariff A, Aziz NSM, Abdullah N. 2014. Slow pyrolysis of oil palm empty fruit bunches for biochar production and characterisation. J Phys Sci, 25, 97–112.
Sharma A, Kooner R, Arora R. 2017. Insect Pests and Crop Losses. In R. Arora & S. Sandhu (Eds.), Breeding Insect Resistant Crops for Sustainable Agriculture. Springer.
Sharma L, Marques G. (2018). Fusarium, an Entomopathogen—A Myth or Reality? Pathogen, 7(93). DOI: 10.3390/pathogens7040093.
Siddiquee S, Shafawati SN, Naher L. 2017. Effective composting of empty fruit bunches using potensial Trichoderma strains. Biotechnology Reports, 13, 1–7. DOI: 10.1016/j.btre.2016.11.001
Speight M. (2016). Insects and Other Animals in Tropical Forests. In L. Pancel & M. Köhl (Eds.), Tropical Forestry Handbook. Springer. DOI: 10.1007/978-3-642-54601-3_200
St. Leger RJ, Cooperand M, Chamley A. 1987. Production of cuticle degrading enzymes by the entomopathogen Metarhizium anisopliae during infection of cuticles from Calliphora vomitoria and Manduca sexta. J Gen Microbiol, 133, 1371–1382. DOI: 10.1099/00221287-133-5-1371.
Tahir AA, Barnoh NFM, Yusof N, Said NNM, Utsumi M, Yen AM, Hashim H, Noor MJMM, Akhir FNMD, Mohamad SE, Sugiura N, Othman N, Zakaria Z, Hara H. 2019. Microbial diversity in decaying oil palm empty fruit bunches (OPEFB) and isolation of lignin-degrading bacteria from a tropical environment. Microbes and Environments, 34(2), 161–168. DOI: 10.1264/jsme2.ME18117
Tahir PM, Liew W-P-P, Lee SY, Ang AF, Lee SH, Mohamed R, Halis R. 2019. Diversity and characterization of lignocellulolytic fungi isolated from oil palm empty fruit bunch, and identification of influencing factors of natural composting process. Waste Management, 100, 128–137. DOI: 10.1016/j.wasman.2019.09.002
Teetor-Barsch GH, Robert DW. 1983. Entomogenous Fusarium species. Mycopathologia, 84(1), 3–16. DOI: 10.1007/BF00436991.
Tkaczuk C, Krzyczkowski T,Wegensteiner R. 2012. The occurrence of entomopathogenic fungi in soils from mid-field woodlots and adjacent small-scale arable fields. Acta Mycologica, 47(2), 191–202. DOI:10.5586/am.2012.024.
Tran VG, Zhao H. 2022. Engineering robust microorganisms for organic acid production. Journal of Industrial Microbiology and Biotechnology, 49(2), 1–8. DOI: 10.1093/jimb/kuab067.
Tuncer C, Kushiyev R, Erper I, Ozdemir IO, Saruhan I. 2019. Efficacy of native isolates of Metarhizium anisopliae and Beauveria bassiana against the invasive ambrosia beetle, Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Egyptian Journal of Biological Pest Control, 29(1), 4–9. DOI: 10.1186/s41938-019-0132-x.
Ullah MI, Altaf N, Afzal M, Arshad M, Mehmood N, Riaz M, Majeed S, Ali S, Abdullah A. 2019. Effects of Entomopathogenic Fungi on the Biology of Spodoptera litura (Lepidoptera: Noctuidae) and its Reduviid Predator, Rhynocoris marginatus (Heteroptera: Reduviidae) . International Journal of Insect Science, 11, 117954331986711. DOI: 10.1177/1179543319867116.
Wagner M, Cobbinah J, Bosu P. 2008. Defoliating Insects. In Forest Entomology in West Tropical Africa: Forests Insects of Ghana (pp. 22–40). Springer, Dordrecht. DOI: 10.1007/978-1-4020-6508-8_2.