Effect of soil types on root infection of Acacia mangium and Eucalyptus pellita by Ganoderma philippii and Pyrrhoderma noxium

##plugins.themes.bootstrap3.article.main##

HERU INDRAYADI
MORAG GLEN
FAHRIZAWATI
BAYO ALHUSAERI SIREGAR
ANTO RIMBAWANTO
MARDAI
BUDI TJAHJONO
CAROLINE MOHAMMED

Abstract

Abstract. Indrayadi H, Glen M, Fahrizawati, Siregar BA, Rimbawanto A, Mardai, Tjahjono B, Mohammed C. 2023. Effect of soil types on root infection of Acacia mangium and Eucalyptus pellita by Ganoderma philippii and Pyrrhoderma noxium. Biodiversitas 24: 2358-2364. Acacia mangium Willd. and Eucalyptus pellita F.Muell. are susceptible to red root-rot disease, caused by Ganoderma philippii (Bres. & Henn. ex Sacc.) Bres., has led to the demise of planted A. mangium as a commercial pulpwood in Indonesia. A second root-rot pathogen, Pyrrhoderma noxium (Corner) L.W.Zhou & Y.C.Dai (syn. Phellinus noxius (Corner) G.Cunn.), also attacks both species. The objective of this study was to investigate the effect of different soil types on the root infection of A. mangium and E. pellita by G. philippii and P. noxium. The effect of three contrasting soil types (mineral R41, R51 and peat soil) used in a plantation estate in Riau province on disease development was investigated in a pot trial using four isolates, two of G. philippii and two of P. noxium. Two models of inoculation were used, in one of which inoculated wood blocks were placed against the seedling roots (Model 1), the second where the blocks were 10-20 cm from the roots (Model 2). Fifty weeks after the experiment was established, mortality was significantly higher in the soil of low than high clay content, in A. mangium than E. pellita, and in Model 1 than Model 2; there was no difference between the two G. philippii isolates, and P. noxium did not cause any mortality. G. philippii inoculum could survive in all three soil types for over 9 months; hence, the effect of soil type was not mediated by inoculum longevity. Alternatives should be pursued to limit further development of root-rot diseases in existing E. pellita estates.

##plugins.themes.bootstrap3.article.details##

References
Agustini L, Francis A, Glen M, Indrayadi H, Mohammed CL, Woodward S. 2014. Signs and identification of fungal root-rot pathogens in tropical Eucalyptus pellita plantations. For. Pathol. 44(6).486-495. DOI:10.1111/efp.12145.
Ann PJ, Chang TTC, Ko WH. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Dis. 86(8).820-826.
Boivin P, Garnier P, Tessier D. 2004. Relationship between Clay Content, Clay Type, and Shrinkage Properties of Soil Samples. Soil Sci. Soc. of Am. J. 68(4).1145-1153. DOI:10.2136/sssaj2004.1145.
Broders KD, Wallhead MW, Austin GD, Lipps PE, Paul PA, Mullen RW, Dorrance AE. 2009. Association of soil chemical and physical properties with Pythium species diversity, community composition, and disease incidence Phytopathology. 99(8).957-967. DOI:10.1094/PHYTO-99-8-0957
Chang TT. 1992. Decline of some forest trees associated with brown root rot caused by Phellinus noxius. Plant Pathol. 1:90-95.
Chang TT. 2003. Effect of soil moisture content on the survival of Ganoderma species and other wood-inhabiting fungi. Plant Dis. 87(10).1201-1204. DOI: D-2003-0718-01R
Cleary MR, van der Kamp BJ, Morrison DJ. 2012. Effects of wounding and fungal infection with Armillaria ostoyae in three conifer species. II. Host response to the pathogen. For. Pathol. 42(2).109-123. DOI:10.1111/j.1439-0329.2011.00727.x.
Coetzee MP, Wingfield BD, Golani G, Tjahjono B, Gafur A, Wingfield MJ. 2011. A single dominant Ganoderma species is responsible for root rot of Acacia mangium and Eucalyptus in Sumatra. South For.: a Journal of Forest Science. 73(3-4).175-180. DOI:doi.org/10.2989/20702620.2011.639488.
Cui BK, Dai YC, He SH, Zhou LW, Yuan HS. 2015. A Novel Phellinidium sp. causes laminated root rot on Qilian Juniper (Sabina przewalskii) in Northwest China. Plant Di. 99(1).39-43. DOI:DOI: 10.1094/PDIS-03-14-0335-RE.
Divon HH, Fluhr R. 2007. Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol. Lett. 266(1).65-74. DOI:10.1111/j.1574-6968.2006.00504.x.
Eyles A, Beadle C, Barry K, Francis A, Glen M, Mohammed C. 2008. Management of fungal root-rot pathogens in tropical Acacia mangium lantations. For. Pathol. 38(5).332-355. DOI:10.1111/j.1439-0329.2008.00549.x.
Farid AM, Lee SS, Maziah Z, Patahayah M. 2009. Pathogenicity of Rigidoporus micropus and Phellinus noxius against four major plantation tree species in Peninsular Malaysia J. Trop. For. Sci. 21(4).289-298.
Filip GM, Kanaskie A, Campbell III A. 1995. Forest disease ecology & management in Oregon. Oregon State University.
Flood J, Keenan L, Wayne S, Hasan Y. 2005. Studies on oil palm trunks as sources of infection in the field. Mycopathologia. 159:101-107.
Francis A, Beadle C, Puspitasari D, Irianto R, Agustini L, Rimbawanto A, Gafur A, Hardiyanto E, Junarto, Hidyati N et al. 2014. Disease progression in plantations of Acacia mangium a?ected by red root rot (Ganoderma philippii). For. Pathol. 44:447-459. DOI:10.1111/efp.12141.
Garbelotto M, Slaughter G, Popenuck T, Cobb FW, Bruns TD. 1997. Secondary spread of Heterobasidion annosum in white fir root-disease centers. Can. J. For. 27(766-773).
Gee GW, Or D. 2002. Chapter 4, Particle Size Analysis. In: Dane JH, Topp GC, editors. Methods of Soil Analysis. Physical Methods, SSSA, Incorporated, Madison; p. 255-294.
Gibbs JN, Greig BJW, Pratt JE. 2002. Fomes root rot in Thetford Forest, East Anglia: past, present and future. Forestry (Lond). 75(2).191-202.
Gill JS, Sivasithamparam K, Smettem KRJ. 2000. Soil types with different texture affects development of Rhizoctonia root rot of wheat seedlings. Plant Soil. 221(113-120).
Gill W, Eyles A, Glen M, Mohammed C, Cleary M. 2016. Structural host responses of Acacia mangium and Eucalyptus pellita to artificial infection with the root rot pathogen, Ganoderma philippii. For. Pathol. 46(4).369-375. DOI:10.1111/efp.12286.
Glen M, Bougher NL, Francis AA, Nigg SQ, Lee SS, Irianto R, Barry KM, Beadle CL, Mohammed CL. 2009. Ganoderma and Amauroderma species associated with root-rot disease of Acacia mangium plantation trees in Indonesia and Malaysia. Australas. Plant Pathol. 38:345-356.
Hardie M, Akhmad N, Mohammed C, Mendham D, Corkrey R, Gafur A, Siregar S. 2017. Role of site in the mortality and production of Acacia mangium plantations in Indonesia. South. For.: a Journal of Forest Science. 80(1).37-50. DOI:10.2989/20702620.2016.1274857.
Harris K, Young IM, Gilligan CA, Otten W, Ritz K. 2003. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol. Ecol. 44:45-56.
Harwood C. 2018. Sustainability of wood production from eucalypt plantations in Asia. Managing eucalypts plantations under global changes; 17-21 September 2018; Uruguay.
Hidayati N, Glen M, Nurrohmah SH, Rimbawanto A, Mohammed CL. 2014. Ganoderma steyaertanum as a root-rot pathogen of forest trees. For. Pathol. 44:460-471. DOI:10.1111/efp.12142.
Ibarra Caballero JR, Ata JP, Leddy KA, Glenn TC, Kieran TJ, Klopfenstein NB, Kim MS, Stewart JE. 2020. Genome comparison and transcriptome analysis of the invasive brown root rot pathogen, Phellinus noxius, from different geographic regions reveals potential enzymes associated with degradation of different wood substrates. Fungal Biol. 124(2).144-154. DOI:10.1016/j.funbio.2019.12.007.
Irianto RSB, Barry K, Hidayati N, Ito S, Fiani A, Rimbawanto A, Mohammed C. 2006. Incidence and spatial analysis of root rot of Acacia mangium in Indonesia. J. Trop. For. Sci. 18(3).157-165.
Iriti M, Faoro F. 2009. Chemical diversity and defence metabolism: How plants cope with pathogens and ozone pollution. Int. J. Mol. Sci. 10(8).3371-3399. DOI:10.3390/ijms10083371.
Kozhar O, Kim MS, Ibarra Caballero J, Klopfenstein NB, Cannon PG, Stewart JE. 2022. Long evolutionary history of an emerging fungal pathogen of diverse tree species in eastern Asia, Australia and the Pacific Islands. Mol. Ecol. 31(7).2013-2031. DOI:10.1111/mec.16384.
Lee SS. 2018. Observation on the successes and failures of acacia plantation in Sabah and Sarawak and the way forward. J. Trop. For. Sci. Anniversary Issue:468–475. DOI:10.26525/jtfs2018.30.5.468475.
Lee SS, Zakaria M. 1992. Fungi associated with heart rot of Acacia mangium in Peninsular Malaysia. J. Trop. For. Sci. 5(4).479-484.
Liu TY, Chen CH, Yang YL, Tsai IJ, Ho YN, Chung CL. 2022. The brown root rot fungus Phellinus noxius affects microbial communities in different root associated niches of trees. Environ. Microbiol. 24(1).276-297. DOI:10.1111/1462-2920.15862.
Loyd AL, Linder ER, Smith ME, Blanchette RA, Smith JA. 2019. Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States. Mycologia. 111(1).1-12. DOI:10.1080/00275514.2018.1543509.
Mih AM, Kinge TR. 2015. Ecology of basal stem rot disease of oil palm (Elaeis guineensis Jacq.) in Cameroon American. J. Agric. For. 3(5).208-215. DOI:10.11648/j.ajaf.20150305.16
Mohammed CL, Beadle C, Francis A, Glen M, Rimbawanto A, Puspitasari D, Yuskianti V, Irianto R, Hidayati N, Widyatmoko A et al. 2012. Management of fungal root rot in plantation acacias in Indonesia. Final report for project (FST/2003/048).
Mohammed CL, Rimbawanto A, Page DE. 2014. Management of basidiomycete root and stem rot diseases in oil palm, rubber and tropical hardwood plantation crops. For. Pathol. 44:428-446. DOI:10.1111/efp.12140.
Nerey Y, Van Beneden S, França SC, Jimenez A, Cupull R, Herrera L, Höfte M. 2010. Influence of soil type and indigenous pathogenic fungi on bean hypocotyl rot caused by Rhizoctonia solani AG4 HGI in Cuba. Soil Biol. Biochem. 42(5).797-803. DOI:10.1016/j.soilbio.2010.01.015.
Otten W, Hall D, Harris K, Ritz K, Young IM, Gilligan CA. 2001. Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. New Phytol. 151:459-468.
Page DE, Glen M, Puspitasari D, Prihatini I, Gafur A, Mohammed CL. 2020. Acacia plantations in Indonesia facilitate clonal spread of the root pathogen Ganoderma philippii. Plant Pathol. 69(4).685-697. DOI:10.1111/ppa.13153.
Paula TDC, Brioso PST. 2021. Resistência de espécies arbóreas tropicais à ação de Ganoderma philippii. Ciência Florestal. 31(1).393-416. DOI:10.5902/1980509843747.
Puspitasari D, Rimbawanto A. 2010. Uji somatik inkompatibilitas Ganoderma philippii untk mengetahui pola sebaran penyakit busuk akar pada tanaman Acacia mangium. J. perbenihan tanam. hutan. 4(1).49-61.
Rao V, Lim CC, Chia CC, Teo KW. 2003. Studies on Ganoderma spread and control. Planter. 79 (927).367-383.
Rees RW, Flood J, Hasan Y, Cooper RM. 2007. Effects of inoculum potential, shading and soil temperature on root infection of oil palm seedlings by the basal stem rot pathogen Ganoderma boninense. Plant Pathol. 56(5).862-870. DOI:10.1111/j.1365-3059.2007.01621.x.
Rees RW, Flood J, Hasan Y, Potter U, Cooper RM. 2009. Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathol. 58:982-989. DOI:10.1111/j.1365-3059.2009.02100.x.
Ritz K, Young IM. 2004. Interactions between soil structure and fungi. Mycol. 18(2).52-59. DOI:10.1017/S0269915XO4002010.
Suwandi, Hamidson H, Naito S. 2004. Distribution of Rigidoporus lignosus genotypes in a rubber plantation, as revealed by somatic compatibility. Mycoscience. 45(1).72-75. DOI:10.1007/s10267-003-0149-5.
Yuskianti V, Glen M, Puspitasari D, Francis A, Rimbawanto A, Gafur A, Indrayadi H, Mohammed CL, Woodward S. 2014. Species-specific PCR for rapid identification of Ganoderma philippii and Ganoderma mastoporum from Acacia mangium and Eucalyptus pellita plantations in Indonesia. For. Pathol. 44(6).477-485. DOI:10.1111/efp.12144.

Most read articles by the same author(s)