Evaluation of agro-morphological and molecular characters of 22 rice landraces of East Timor

##plugins.themes.bootstrap3.article.main##

LUIS MANUEL BRANCO
ENDAH RETNO PALUPI
SATRIYAS ILYAS
BAMBANG SAPTA PURWOKO
AGUS PURWITO

Abstract

Abstract. Branco LM, Palupi ER, Ilyas S, Purwoko BS, Purwito A. 2023. Evaluation of agro-morphological and molecular characters of 22 rice landraces of East Timor. Biodiversitas 24: 2536-2546. Landraces play an important role in the local food security and sustainable development of agriculture as a source of genes that control important traits adaptive to environmental conditions. The study aimed to characterize the agro-morphological and molecular characteristics of 22 rice landraces of East Timor (Timor Leste). The research was conducted in April-August 2018 in Caibada-Baucau-East Timor. Soil analysis was conducted at the Soil Laboratory of the Agronomy and Horticulture Department, IPB University. Materials used were 22 rice landraces seeds and one check variety. The seeds were germinated in seedbed seedlings with a basin (30 cm x 25 cm). The seedlings were planted in the field 16 days after sowing in a plot of 1.5 m x 7.0 m and a spacing of 25 cm x 25 cm, with an isolation distance between plots of ±3 m. Data collection was based on nine growth phases of rice. The cluster analysis based on agro-morphological characters resulted in 6 groups with a similarity coefficient of 0.17 or 17%, showing a high level of diversity. The lowest yield was Ale Kukefuhu (290 g/m2), and the highest was Hare Nona Portu (979 g/m2). Using 10 RAPD markers, the 22 rice landraces samples produced 77 DNA fragment bands with sizes between 300 bp-1475 bp, averaging 3.35 alleles per landrace; polymorphic rates of 8.1. OPA8, OPH1, and OPH7 markers were the highest (100.00%), and OPF5 was the lowest (66.67%) polymorphic percentage. Based on the molecular marker, the coefficient of similarity of the landraces ranged from 0.12 to 0.51, and they were grouped into five clusters.

##plugins.themes.bootstrap3.article.details##

References
Afiukwa CA, Oselebe HO, Igwe DO, Ogah O, Faluyi JO, Nnamani CV, Oketa CN, Afiukwa FN, Nwode NP. 2021. Agro-morphological and molecular characterization of rice accessions cultivated in Abakaliki, Nigeria. EBSU J. Nature. 3: 30-46.
Ahmed MSU, Bashar MK, Wazuddin MD, Samsuddin AKM. 2016. Agro-morfological qualitative of Jso-Balam rice (Oryza sativa L.) accession in Bangladesh. inter. Jour. of Agro. And Agri. Research. 8:50-58.
Alam MS, Begum SN, Gupta R and. Islam SN. 2014. Genetic diversity analysis of rice (Oryza sativa L.) landraces through RAPD markers. Int. J. Agril. Res. Innov. & Tech. 4:77-87. ISSN: 2224-0616.
Al-Tahir FMM. 2014. Flag leaf characteristics and relationship with grain yield and grain protein percentage for three
cereals. J. of Med. Plants Studies. 2: 1-7. ISSN 2320-3862.
Anwari G, Moussa AL, Wahidi AB, Mandozai A, Nasar J, Mohamed MG, El-Rahim A. 2019. Effects of planting distance on yield and agro morphological characteristics of local rice (Bara variety) in Northeast Afghanistan. Curr. Agri. Res. 7:350-357.
Asmamaw BA. 2015. Effect of planting density on growth, yield and yield attributes of rice (Oryza sativa L.). African J. Agri. Res. 12: 2713-2721. DOI:10.5897/AJAR2014.9455.
Babu KN, Sheeja TE, Minoo D, Rajesh MK, Samsudeen K, Suraby EJ, Kumar IPV. 2020. Random amplified polymor-phic DNA (RAPD) and derived techniques. Mol. Plant Tax. 2222: 219–247.
Bigyan KC, Pandit R, Kandel BP, Kumar K, Arpana KC, Poudel MR. 2021. Scenario of plant breeding in Nepal and its application in rice. Inter. J. of Agron. 2021:1-9. https://doi.org/10.1155/2021/5520741.
Bhuiyan MSH, Malek MA, Bhuiyan SH, Islam M and Hassan ABA. 2019. Mutation determination of rice by using RAPD primers. Int. J. Agril. Res. Innov. Tech. 9: 1-7. ISSN: 2224-0616, June 2019.
Cahyarini RD, Yunus A, Purwanto E. 2004. Identifikasi keragaman genetik beberapa varietas lokal kedelai di Jawa Ber-dasarkan Analisis Isozim. Agrosains 6 (2):79-83.
Chaniago N. 2017. Karakterisasi morfologi beberapa kultivar padi gogo lokal Sumatra Utara. J. Agrica Extensia.11: 46-54.
Chauhan R, Jasra Y, Pandya H, Gami R, Tiwari K. 2015. Genetic diversity analysis of six major cereal crops cultivars through RAPD markers. Bioinfo Proteom Img Anal 1:20- 24.
Deng R, Tao M, Huang X, Bangura K, Jiang Q, Jiang Y. Qi L. 2021. Automated counting grains on the rice panicle based on deep learning method. Plant Methods. 21:2-14. DOI: 10.3390/s21010281.
Dewi IS, Ambarwati AD, Apriana A, Sisharmini A, Somantri H, Suprihatno B, Ridwan I. 2012. Pembentukan genotipe padi berumur sangat genjah melalui kultur antera. Bul. Plasma Nutfah. 8: 54-61. DOI:10.21082/BLPN.V18N2.2012.P54-61.
Ding C, You J, Chen L, Wang S, Yanfeng Ding Y . 2014. Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice. Plant Cell Rep. 33:363–371. DOI 10.1007/s00299-013-1536-9.
Dos Santos A. Utomo W. 2010. Implementasi Kebijakan Peredaran Beras Impor (Studi Kasus di Kementerian Pariwisata, Perdaganagan dan Industrian Timor-Leste. [Tesis]. Universitas Gajah Mada, Jogyakarta [Indonesia].
Eka HA, Novi H, Elita DH. 2019. food consumption diversity based on local resources in dealing. with food security in Indonesia. Russian J. Agri. and Socio-Econom. Sci. 8:236-241. DOI 10.18551/rjoas.2019-02.28. RJOAS, 2:236-241.
FAO [Food and Agriculture Organization]. 2016. Cereal Supply and Demand Brief. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Fukushima A. 2019. Varietal differences in tiller and panicle development determining the total number of spikelets per unit area in rice. Plant Prod. Sci. 22:1-10. DOI.org/10.1080/1343943X.2018.1562308.
Haquarsum EJV, Sutjahjo SH, dan Yudiansyah. 2015. CTAB’s modification: High-quality plant DNA extraction of toma-to for PCR with heat shock treatment. The paper was presented at the Sabrao 13th Congress and Inter. Conf.14-16 September 2015.
Hour A-Li, Hsieh W-Hu, Su-huang Chang S-Hu, Chin H-sh, Lin Y-Ro. 2020. Improved varieties of rice (Oryza sativa L.) in Taiwan. Rice J. 13:1-12.
Huang L, Wang F, Liu Y, Tian X, Zhang Y. 2021. Can optimizing seeding rate and planting density alleviate the yield loss of double-season rice caused by prolonged seedling age?. Crop Science. 61:1–16. DOI: 10.1002/csc2.20541.
IRRI [International rice research Institut]. 2013. Standart Evaluation System for Rice. (5TH Edition.) Manila, Philippines P.O. Box 933, 1099.
Jamora N, Ramaiah V. 2022. Global demand for rice genetic resources. CABI Agriculture and Bioscience. 3:1-15.
Kadidaa B, Sadimantara GR, Suaib, Safuan LO, Muhidin. 2017. Genetic diversity of local upland rice (Oryza sativa L.) genotypes based on agronomic traits and yield potential in North Buton, Indonesia. Asian J. Crop Sci. 9: 109-117.
Karande PT, Nandeshwar BC, Kokane AD, Chavhan RL. Dethe AM. 2017. Assessment of genetic diversity using RAPD marker among different varieties of rice (Oryza sativa L.). Int. J. Tropical Agri. 35: 1-9. ISSN: 0254-8755.
Khan WI, Kifayatullah K. 2022. Effects of different planting densities and planting spaces on the growth and yield at-tributes of rice under irrigated conditions. Int. J. of Biosciences. 1: 1-8.
Khan MH, Dar ZA, Dar SA. 2015. Breeding strategies for improving rice yield-a review. Agricultural Sciences. 6 : 467-478. DOI.org/10.4236/as.2015.65046.
Kurniasih NS, Susandarini R, Susanto FA, Nuringtyas TR, Jenkins G, Purwestri YA. 2019. Characterization of Indone-sian pigmented rice (Oryza sativa L.) based on morphology and single nucleotide polymorphisms. J. Biodiversity. 20: 1208-1214. DOI:10.13057/BIODIV/D200437.
Li G, Zhang H, Li J, Zhang Z, Li Z. 2021. Genetic control of panicle architecture in rice, The Crop J. 9: 590-597. DOI: https://doi.org/10.1016/j.cj.2021.02.004.
Liu Q., Yin C, Li X, He C, Din Z, Du X. 2022. Lodging resistance of rice plants studies from the perspective of culm me-chanical properties, carbon framework, free volume, and chemical composition. Sci. Reports. 12:1-13. DOI.org/10.1038/s41598-022-24714-4.
Lu Y, Chuan M, Wang H, Chen R, Tao T, Zhou Y, Xu Y, Li P, Yao Y, Xu YZ. 2022. Genetic and molecular factors in determining grain number per panicle of ec. Crop and Product Physiology. Front. Plant Sci. 13:964246:11-14.
Mafaza VN, Handoko, Adirejo AL. 2018. Keragaman genetik karakter morfologi beberapa genotip padi merah (Oryza sativa L.) pada fase vegetatif dan generatif. J. Produksi Tanaman. 6:3048-3055. DOI:10.21176/PROTAN.V6I12.1053.
Maruyama A, Hamasaki T, Sameshima R, Nemoto M, Ohno H, Ozawa K, Akiyam YW. 2015. Panicle emergence pattern and grain yield of rice plants in response to high-temperature stress. J. of Agri Meteorology. 71: 282-291.
Maulan Z, Tutik Kuswinan T, Sennang NR, Syaif SA. 2014. Eksplorasi keragaman plasma nutfah padi lokal asal Tana Toraja dan Enrekang berdasarkan karakterisasi morfologi. Int. J. Sci. & Tech. Res. 347-352p.
Mohidem NA, Hashim N. Shamsudin R, Man HC. 2022. Rice for food security: revisiting its production, diversity, rice milling process and nutrient content. Agriculture. 12: 1-29. DOI: 10.3390/agriculture12060741.
Pathak H. 2018. Agro-morphological diversity (quantitative traits) of rice (Oryza sativa L.) cultivated in Nepal. Himala-yan Biodiversity 6: 52-57. DOI: 10.3126/hebids.v6i0.33532.
Pillai PS, Surya MS. 2021. Physiological response of flag leaf nutrition in rice (Oryza sativa L.). Int.J. Curr. Microbiol. App.Sci.10:1852-1862. https://doi.org/10.20546/ijcmas.2021.1002.220.
Rabara RC, Ferrer MC, Calayugan MIC , Duldulao MD, Rabara JJ. 2015. Conservation of rice genetic resources for food security. Adv Food Technol Nutr Sci. J. 2015:51-56. doi.org/10.17140/AFTNSOJ-SE-1-108.
Rahman MdA, Haque ME, Sikdar B, Islam MdA, Matin mn. 2013. Correlation analysis of flag leaf with yield in several rice cultivars. J. Life Earth Sci. 8: 49-54. DOI: 10.3329/jles.v8i0.20139.
Rahman MM, Connor JD. 2022. The effect of high-yielding variety on rice yield, farm income and household nutrition: evidence from rural Bangladesh. Agriculture & Food Security. 11: 1-11. DOI.org/10.1186/s40066-022-00365-6
Saidah, Suwitra IK, Samudin S, Syafruddin. 2015. Sifat morfologi padi lokal kamba di Sulawesi Tengah Morphological study of the local paddy “Kamba” in Central Sulawesi. Pros. Sem. Nas. Masy. Biodiv. Indon.1:548-553. DOI:10.13057/psnmbi/m010329.
Sajib AM, Hossain MM. Mosnaz ATMJ, Islam MM, Ali MS, Prodhan SM. 2012. SSR marker analysis of aromatic land-races of rice (Oryza sativa L.). J. Biosci. Biotech. 1:107-116.
Sandra H, Solís D, Rivera RM, David DL, Álvarez RC. 2015. Morphoagronomic evaluation of traditional rice cultivars (Oryza Sativa L.) collected in a grower farm from Pinar Del Río Province. Cultivos Tropicales. 36:131-141.
Sharma S, Pokhrel A, Dhakal A, Poudel A. 2020. Agro-morphological characterization of rice (Oryza sativa L.) landraces of Lamjung and Tanahun District, Nepal. Annals of Plant Sciences 9: 3731-3741.
Sinha AK, Mallick GK, Mishra PK. 2015. Grains agro morphological diversity of traditional varieties (Oryza sativa L.) in the Catering Region of West Bengal. Int. J. of Conservation Sci. 6: 419-426. ISSN: 2067-533X.
Sinha AK, Mishra PK. 2013. Agro-morphological characterization of rice landraces variety (Oryza sativa L.) of Bankura district of West Bengal. Res. in Plant Bio. 3:28-36.
Sulistyowati S, Lestari AP, Mulyaningsih ES. 2018. Hubungan kekerabatan padi gogo pada kondisi ternaungi berdasar-kan analisis RAPD. Pros Sem Nas Masy Biodiv Indon. 4:190-194. DOI:10.13057/PSNMBI/M040216.
Surje DT, Roy M, Sahana N, Mandal S, Pandit GK, Roya SK, Roy B. 2022. Ex situ conservation and qualitative charac-terization of traditional cultivars of rice (Oryza sativa L.). Indian J. of Traditional Knowledge. 21: 168-179.
Walter SA. 2018. Essential role of crop landraces for world food security. Mod. Concept. Dev. Agron. 1: 91-94. DOI: 10.31031/MCDA.2018.01.000523.
Wang T., Zou T, He Z, Yuan G, Luo T, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Liu H, Wang L, Li P, Li S. 2019. Grain length and awn 1 negatively regulate grain size in rice. J. Integrative Plant Biol. 61:1036-1042.
Yang G, Wang X, Nabi F, Wang H, Changkun Zhao C, Peng Y, Ma J, Hu Y. 2021. Optimizing planting density and im-pact of panicle types on grain yield and microclimatic response index of hybrid rice (Oryza sativa L.). Int. J. of Plant Productio.15:447–457.DOI.org/10.1007/s42106-021-00150-8.
Young P. 2013. Impact of rice imports on rice production in Timor-Leste. Commissioned. study for the seed of life pro-gram, Minister of Agriculture and Fisheries, Dili.
Zhan P., Ma S, Xiao Z, Li F, Wei X, Lin S, Wang X, Ji Z, Fu Y, Pan J, Zhou M, Liu Y, Chang Z, Li L, Bu S, Liu Z, Zhu H, Liu G, Zhang G, Wang S. 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. J. Genet. Genomics. 49:405-413. DOI: 10.1016/j.jgg.2022.01.008..
Zhao S, Gu J, Zhao Y, Hassan M, Li Y, Ding W. 2015. A method for estimating spikelet number per panicle: integrating image analysis and a 5-point calibration model. Scientific Reports. 5: 1-10. Doi: 10.1038/srep16241.
Ziyi Y, Zhijian X, Qingwen Y, Weihua Q. 2022. Conservation and utilization of genetic resources of wild rice in China. Rice Sci. 29: 216-224. DOI.org/10.1016/j.rsci.2021.08.003.

Most read articles by the same author(s)

<< < 1 2 3 > >>