The antiviral potential of macroalgae in suppressing Sweet potato leaf curl virus (SPLCV) infection in sweet potatoes

##plugins.themes.bootstrap3.article.main##

LISTIHANI LISTIHANI
I GUSTI AYU DIAH YUNITI
PUTU LASMI YULIANTHI SAPANCA
NI PUTU PANDAWANI
DEWA GEDE WIRYANGGA SELANGGA

Abstract

Abstract. Listihani L, Yuniti IGAD, Sapanca PLY, Pandawani NP, Selangga DGW. 2023. The antiviral potential of macroalgae in suppressing Sweet potato leaf curl virus (SPLCV) infection in sweet potatoes. Biodiversitas 24: 4079-4086. Sweet potato leaf curl virus (SPLCV) was first found in sweet potatoes in Indonesia in 2022. Prevention of spread of virus is essential, especially by using macroalgae extract which is environmentally friendly and has antiviral activity. The aim of present research was to test the potential of sea macroalgae to suppress SPLCV infection and to analyze phytochemicals of potential macroalgae containing an antiviral substance. Macroalgae extract was sprayed on the test plants that were infected by SPLCV. The observed parameters were changes in symptoms, disease incidence and severity, virus confirmation by PCR, and phytochemical analysis. The test results up to day 21 showed that Eucheuma spinosum was found to be effective in suppressing SPLCV infection in sweet potatoes, up to symptomless infection in young leaves. E. spinosum and E. cottonii suppressed disease incidence by 80% and 40% and lower disease severity as much as 71% and 48%, while E. serra showed less ability to suppress SPLCV infection. The two macroalgae had flavonoid, saponin, and steroid content which may be the reason to suppress the viral infection. The results of PCR analysis showed that microalgal extract had the highest nucleotide and amino acid homology with Gianyar (LC586170) isolate with values of 99.7 and 100%. The macroalgae with the highest ability to suppress the virus were E. spinosum and E. cottonii. This showed that the application of macroalgae extract did not change the amino acid sequence of SPLCV isolate.

##plugins.themes.bootstrap3.article.details##

References
Ahamed F, Murugan M. 2019. Isolation and characterization of marine endophytic fungi from seaweeds, and bioactivity of their crude extracts. J Pure Appl Microbiol 13(3):1451-1460. DOI: 10.22207/JPAM.13.3.15
Ahmadi A, Moghadamtousi SZ, Abubakar S, Zandi K. 2015. Antiviral potential of algae polysaccharides isolated from marine sources: a review. Biomed Res Int 41:42. DOI: 10.1155/2015/825203
Albuquerque LC, Inoue-Nagata AK, Pinheiro B. 2012. A novel monopartite begomovirus infecting sweet potato in Brazil. Arch Virol 156:1291-1294. DOI: 10.1007/s00705-011-1016-x
Ammar EE, Aioub AAA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, EL-Shershaby NA. 2022. Algae as biofertilizers: Between current situation and future prospective. Saudi J Biol Sci 29(5):3083-3096. DOI: 10.1016/j.sjbs.2022.03.020
Andreason SA, Olaniyi OG, Gilliard AC, Wadl PA, Williams LH, Jackson DM, Simmons AM, Ling K-S. 2021. Large-scale seedling grow-out experiments do not support seed transmission of Sweet potato leaf curl virus in sweet potato. Plants 10(1):139. DOI: 10.3390/plants10010139
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H. 2022. Algae and their metabolites as potential bio-pesticides. Microorganisms 10:307. DOI: 10.3390/ microorganisms10020307
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, Yilmaz M, Tsiamis G. 2022. Algae and their metabolites as potential bio-pesticides. Microorganisms 10(2):307. DOI: 10.3390/microorganisms10020307
Bachwenkizi HS, Temu GE, Mbanzibwa DR, Lupembe MD, Ngailo S, Tairo FD, Massawe DP. 2022. Recombination and darwinian selection as drivers of genetic diversity and evolution of sweet potato leaf curl viruses in Tanzania. Physiol Mol Plant Pathol 120:101853. DOI: 10.1016/j.pmpp.2022.101853
Barbosa M, Valentão P, Andrade PB. 2014. Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar Drugs 12:4934-4972. DOI: 10.3390/md12094934
Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M. 2018. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol 30:1061-1072. DOI: 10.1007/s10811-017-1283-3
Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, Socaci SA, Farcas AC. 2020. Macroalgae-A sustainable source of chemical compounds with biological activities. Nutrients 12(10):3085. DOI: 10.3390/nu12103085
Carpena M, Garcia-Perez P, Garcia-Oliveira P, Chamorro F, Otero P, Lourenco-Lopes P, Cao H, Simal-Gandara J, Prieto MA. 2022. Biological properties and potential of compounds extracted from red seaweeds. Phytochem Rev 12:1-30. DOI: 10.1007/s11101-022-09826-z
Cho SH, Kil EJ, Cho S, Byun HS, Kang EH, Choi HS, Lee MG, Lee JS, Lee YG, Lee S. 2020. Development of novel detection system for sweet potato leaf curl virus using recombinant scFv. Sci Rep 10:8039. DOI: 10.1038/s41598-020-64996-0
Choi E, Lee G, Park J, Lee T, Choi H, Lee S. 2012. Molecular characterization and an infectious clone construction of Sweet potato leaf curl virus (SPLCV) isolated from Korea. Acta Virol 56:187-198. DOI: 10.4149/AV_2012_03_187
Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S, Kreuze JF, Gibson RW, Mukasa SB, Tugume AK, Tairo FD, Valkonen JPT. 2012. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis 96:168-185. DOI: 10.1094/PDIS-07-11-0550
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira LA. 2020. Comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life (Basel) 10(3):19. DOI: 10.3390/life10030019
Cuellar WJ, Galvez M, Fuentes S, Tugume J, Kreuze J. 2015. Synergistic interactions of begomoviruses with Sweetpotato chlorotic stunt virus (genus Crinivirus) in sweetpotato (Ipomoea batatas L.). Mol Plant Pathol 16:459-471. DOI: 10.1111/mpp.12200
Duarte LML, Alexandre MAV, Chaves ALR, Santos DYACD, Souza ACOD, Bernacci LC. 2021. Plant-virus infection inhibitors: The great potential of Caryophyllales species. Physi Mol Plant Pathol 113:101597. DOI: 10.1016/j.pmpp.2020.101597
Garcia-Gonzalez J, Sommerfeld M. 2016. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28(2):1051-61. DOI: 10.1007/s10811-015-0625-2
Ghannam A, Abbas A, Alek H, Al-Waari Z, Al-Ktaifani M. 2013. Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga (Hypnea musciformis). Physiol Mol Plant Pathol 84:19-27. DOI: 10.1016/j.pmpp.2013.07.001
González A, Castro J, Vera J, Moenne A. 2013. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J. Plant Growth Regul 32:443-448. DOI: 10.1007/s00344-012-9309-1
Hamed SM, El-Rhman AAA, Abdel-Raouf N, Ibraheem IBM. 2018. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef Univ J Basic Appl Sci 7(1):104-110. DOI: 10.1016/j.bjbas.2017.08.002
Hentati F, Tounsi L, Djomdi D, Pierre G, Delattre C, Ursu AV, Fendri I, Abdelkafi S, Michaud P. 2020. Bioactive polysaccharides from seaweeds. Molecules 25(14):3152. DOI: 10.3390/molecules25143152
Jiang L, Wu J, Fan S, Li W, Dong L, Cheng Q, Xu P, Zhang S. 2015. Isolation and characterization of a novel pathogenesis-related protein gene (GmPRP) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. Plos one 10(6):e0129932. DOI: 10.1371/journal.pone.0129932
Kadota Y, Liebrand TWH, Goto Y, Paul Derbyshire JS, Menke FLH, Torres MA. 2019. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol 221:2160-2175. DOI: 10.1111/nph.15523
Kalitnik AA, Byankina Barabanova AO, Nagorskaya VP, Reunov AV, Glazunov VP, Soloveva TF. 2013. Low molecular weight derivatives of different carrageenan types and their antiviral activity. J Appl Phycol 25:65-72. DOI: 10.1007/s10811-012-9839-8
Kawaroe M, Prartono T, Kusuma A H. 2013. Effect of acid concentration on hydrolysis efficiency on Caulerpa racemosa, Sargassum crassifolium and Gracilaria salicornia. Int J Environ Bioenerg 8(3):127-134.
Kim J, Kil EJ, Kim S, Seo H, Byun HS, Park J, Chung MN, Kwak HR, Kim MK, Kim CS, Yang JW, Lee KY, Choi HS, Lee S. 2015. Seed transmission of Sweet potato leaf curl virus in sweet potato (Ipomoea batatas). Plant Pathol 64:1284-1291.
Kumar R, Barua P, Chakraborty N, Nandi AK. 2020. Systemic acquired resistance specific proteome of Arabidopsis thaliana. Plant Cell Rep 39:1549-1563. DOI: 10.1007/s00299-020-02583-3
Listihani L, Ariati PEP, Yuniti IGAD, Selangga DGW. 2022b. The brown planthopper (Nilaparvata lugens) attack and its genetic diversity on rice in Bali, Indonesia. Biodiversitas 23(9): 4696-4704. DOI: 10.13057/biodiv/d230936.
Listihani L, Damayanti TA, Hidayat SH, Wiyono S. 2020. First report of cucurbit aphid-borne yellows virus on cucumber in Java, Indonesia. J Gen Plant Pathol 86(3):219-23. DOI: 10.1007/s10327-019-00905-2
Listihani, Hidayat SH, Wiyono S, Damayanti TA. 2019. Characteristic of Tobacco mosaic virus isolated from cucumber and tobacco collected from East Java, Indonesia. Biodiversitas 20:2937-2942. DOI: 10.13057/biodiv/d201023
Listihani, Selangga DGW. 2021. Molecular Identification of Sweet potato virus C on Sweetpotato in Bali, Indonesia. J Perlindungan Tanaman Indones 25(1):56-63. DOI: 10.22146/jpti.64545. [Indonesian]
Listihani, Yuniti IGAD, Phasmidi PE, Lestari PFK. 2022a. First report of Sweet potato leaf curl virus on sweetpotato in Indonesia. Indian Phytopathol 75:595-598. DOI: 10.1007/s42360-022-00489-6
Lola-Luz T, Hennequart F, Gaffney M. 2014. Effect on yield, total phenolic, total flavonoid and total isothiocyanate content of two broccoli cultivars (Brassica oleraceae var italica) following the application of a commercial brown seaweed extract (Ascophyllum nodosum). Agri Food Sci 23(1):28-37. DOI: 10.23986/afsci.8832
Lomartire S, Marques JC, Gonçalves AMM. 2022. An overview of the alternative use of seaweeds to produce safe and sustainable bio-packaging. Applied Sciences 12(6):3123. DOI: 10.3390/app12063123
Maina S, Barbetti MJ, Edwards OR, Almeida LD, Ximenes A, Jones RAC. 2018. Sweet potato feathery mottle virus and Sweet potato virus C from East Timorese and Australian Sweetpotato: Biological and Molecular Properties, and Biosecurity Implications. Plant Disease 102(3):589599. DOI: 10.1094/PDIS-08-17-1156-RE
Martins B, Vieira M, Delerue-Matos C, Grosso C, Soares C. 2022. Biological potential, gastrointestinal digestion, absorption, and bioavailability of algae-derived compounds with neuroprotective activity: A comprehensive review. Mar Drugs 20(6):362. DOI: 10.3390/md20060362
Mierziak J, Kostyn K, Kulma A. 2014 Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240-16265. DOI: 10.3390/molecules191016240
Murata MM, Morioka LRI, Marques JBDS, Basso A, Suguimoto HH. 2021. What do patents tell us about microalgae in agriculture?. AMB Expr 11:154. DOI: 10.1186/s13568-021-01315-4
Nawaim A, Abdallah RAB, Jabnoun-Khiareddine H, Nefzi A, Safa R, Daami-Remadi M. 2017. Sargassum vulgare extracts as an alternative to chemical fungicide for the management of Fusarium dry rot in potato. J Agri Sci Food Res 8(4):197.
Nawaim A, Abdallah RAB, Jabnoun-Khiareddine H, Nefzi A, Safa R, Daami-Remadi M. 2018. Extracts from the brown macroalga Sargassum vulgare for postharvest suppression of potato Fusarium dry rot. Nat Prod Chem Res 6(4): 329. DOI: 10.4172/2329-6836.1000329
Nicaise V. 2015. Lost in translation: an antiviral plant defense mechanism revealed. Cell Host Microbe 17:417-419. DOI: 10.1016/j.chom.2015.03.009
Pandawani NP, Listihani L, Widnyana IK, Ariati PEP, Selangga DGW. 2022. High impact of Clerodendrum paniculatum leaf extract to suppress zucchini yellow mosaic virus infection in zucchini plants. Biodiversitas 23:2914-2919. DOI: 10.13057/biodiv/d230618
Prajapati VD, Maheriya PM, Jani GK, Solanki HK. 2014. Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97-112. DOI: 10.1016/j.carbpol.2014.01.067
Raj TS, Graff KH, Suji HA. 2016. Bio chemical characterization of a brown seaweed algae and its efficacy on control of rice sheath blight caused by Rhizoctonia solani Kuhn. Int J Trop Agric 34:429-439.
Sami FJ, Soekamto NH, Firdaus, Latip J. 2021. Bioactivity profile of three types of seaweed as an antioxidant, UV-protection as sunscreen and their correlation activity. Food Research 5(1):441-447. DOI: 10.26656/fr.2017.5(1).389
Sangha JS, Kandasamy S, Khan W, Bahia NS, Singh RP, Critchley AT. 2015. ?-Carrageenan suppresses Tomato chlorotic dwarf viroid (TCDVd) replication and symptom expression in tomatoes. Mar Drugs 13:2875-2889. DOI: 10.3390/md13052875
Santosa SY. 2017. Compound Class and Phytochemical Content of Antiviral Macroalgae as Antivirus for Cucumber mosaic virus (CMV). IPB University, Indonesia.
Seif YIA, El-Miniawy SE-DM, El-Azm NAA, Hegazi AZ. 2016. Response of snap bean growth and seed yield to seed size, plant density and foliar application with algae extract. Ann Agric Sci 61(2):187-99. DOI: 10.1016/j.aoas.2016.09.001
Selangga DGW, Hidayat SH, Susila AD, Wiyono S. 2018. The effect of silica (SiO2) to the severity of yellow leaf curl disease on chili pepper. Jurnal Perlindungan Tanaman Indonesia 23(1): 54-60. DOI: 10.22146/jpti.38951. [Indonesian]
Selangga DGW, Listihani L. 2022. Squash leaf curl virus: species of begomovirus as the cause of butternut squash yield losses in Indonesia. Hayati J Biosci 29(6): 806-813. DOI: 10.4308/hjb.29.6.806-813.
Selangga DGW, Temaja IGRM, Wirya GNAS, Sudiarta IP, Listihani L. 2022. First report of Papaya ringspot virus-watermelon strain on melon (Cucumis melo L.) in Bali, Indonesia. Indian Phytopathology 75(3):911-914. DOI: 10.1007/s42360-022-00519-3.
Sharma HSS, Fleming C, Selby C, Rao JR, Martin T. 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26(1):465-90. DOI: 10.1007/s10811-013-0101-9
Shukla PS, Borza T, Critchley AT, Prithiviraj B. 2016. Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Front Mar Sci 3:81. DOI: 10.3389/fmars.2016.00081
Stadnik MJ, De Freitas MB. 2014. Algal polysaccharides as source of plant resistance inducers. Trop Plant Pathol 39:111-118. DOI: 10.1590/S1982-56762014000200001
Sudirman S, Hsu YH, He JL, Kong ZL. 2018. Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice. Plos One 13(10):e0205252. DOI: 10.1371/journal.pone.0205252
Thanaa SM, Shaaban KM, Morsey MM, El-Nagger YI. 2016. Study on the effect of pre-harvest treatments by seaweed extract and amino acids on Anna apple growth, leaf mineral content, yield, fruit quality at harvest and storability. International J of Chem Tech Research 9(5):161-71.
Triwidodo H, Listihani. 2020. High impact of PGPR on biostatistic of Aphis craccivora (Hemiptera: Aphididae) on yardlong bean. Biodiversitas 21 (9): 4016-4021. DOI: 10.13057/biodiv/d210912.
Wan AHL, Davies SJ, Soler-Vila A, Fitzgerald R, Johnson MP. 2018. Macroalgae as a sustainable aquafeed ingredient. Aquaculture 11(3):458-492. DOI: 10.1111/raq.12241
Wanjala BW, Ateka EM, Miano DW, Low JW, Kreuze JF. 2020. Storage root yield of sweetpotato as influenced by Sweetpotato leaf curl virus and its interaction with Sweetpotato feathery mottle virus and Sweetpotato chlorotic stunt virus in Kenya. Plant Dis 104:1477-1486. DOI: 10.1094/PDIS-06-19-1196-RE
Zhang K, Lu H, Wan C, Tang D, Zhao Y, Luo K, Li S, Wang J. 2020. The spread and transmission of sweet potato virus disease (SPVD) and its effect on the gene expression profile in sweet potato. Plants (Basel) 9(4):492. DOI: 10.3390/plants9040492.
Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y. 2017. Advances and prospects in biogenic substances against plant virus: A review. Pestic Biochem Phys 135:15-26.
Zhao L, Hao XA, Wu YF. 2015. Inhibitory effect of polysaccharide peptide (PSP) against tobacco mosaic virus (TMV), Int J Biol Macromol 75:474-478. DOI: 10.1016/j.ijbiomac.2015.01.058
Zhou Q, Meng Q, Tan X, Ding W, Ma K, Xu Z, Huang X, Gao H. 2021. Protein Phosphorylation Changes During Systemic Acquired Resistance in Arabidopsis thaliana. Front Plant Sci 12:748287. DOI: 10.3389/fpls.2021.748287.

Most read articles by the same author(s)

1 2 > >>