Measuring climate action readiness in maintaining ecological resilience using satellite imagery and field research in Garang Watershed, Central Java, Indonesia

##plugins.themes.bootstrap3.article.main##

BAMBANG SUDARMANTO
SURANTO
SUNTORO
JOKO SUTRISNO

Abstract

Abstract. Sudarmanto B, Suranto S, Suntoro S, Sutrisno J. 2023. Measuring climate action readiness in maintaining ecological resilience using satellite imagery and field research in Garang Watershed, Central Java, Indonesia. Biodiversitas 24: 2958-2974. The long-term viability of vegetation as a representation of land cover in a watershed is critical. However, more work is needed to develop vegetation management in the form of a climate action model that considers the existence of ecological and social values as a unified system, particularly in times of climate change. Moran's Index measurements and statistical correlation analysis were employed in this study to quantify geographical patterns. These measurements provide real-world judgment in developing aggressive climate response scenarios. Ecological values were derived from shifting vegetation trend indices due to mutual interaction between living beings that build a life cycle in harmony with the environment. Meanwhile, social values are determined by assessing individual internal factors such as attitudes, knowledge, and responses and external factors represented by local government institutions. The findings reveal that the distribution of residents and residential areas is dispersed. With a high confidence level, a linear index declines with R2 = 0.5872 for inhabitants and R2 = 0.9171 for residential areas. In the dry season, there is a significant relationship between the spatial pattern of vegetation indices and the inhabitant's index. The community's knowledge and attitudes considerably impact changes in vegetation indices, particularly during the rainy season, with R2 = 0.207 for SAVI and 0.232 for NDVI. Community readiness values, which elaborate on knowledge, attitudes, responses, and the role of external institutions, show that community readiness in the upstream area of the watershed, specifically in the Kendal District, is in the best position, with a value of 6.627976. On the contrary, the Semarang District, the upstream area, has the lowest value of 4.257092.

##plugins.themes.bootstrap3.article.details##

References
Aderele, M. O., Bola, T. S., & Oke, D. O. (2020). Land Use/Land Cover Changes of Ago-Owu Forest Reserve, Osun State, Nigeria Using Remote Sensing Techniques. Open Journal of Forestry, 10(04), 401–411. https://doi.org/10.4236/ojf.2020.104025
Al-akhdar, E. A., Sensing, R., & Techniques, G. I. S. (2022). Detecting the Influence of Urban Expansion on Vegetation Intensity in North Detecting the Influence of Urban Expansion on Vegetation Intensity in North East Al-Jabal Al-Akhdar , Libya Using Remote Sensing and GIS Techniques. August.
Alam, A., Bhat, M. S., & Maheen, M. (2019). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal. https://doi.org/10.1007/s10708-019-10037-x
Alqurashi, A. F., & Kumar, L. (2013). Investigating the Use of Remote Sensing and GIS Techniques to Detect Land Use and Land Cover Change: A Review. Advances in Remote Sensing, 02(02), 193–204. https://doi.org/10.4236/ars.2013.22022
Anselin, L. (2019). A Local Indicator of Multivariate Spatial Association: Extending Geary’s c. In Geographical Analysis (Vol. 51, Issue 2). https://doi.org/10.1111/gean.12164
Ardiansyah, Hernina, R., Suseno, W., Zulkarnain, F., Yanidar, R., & Rokhmatuloh, R. (2019). Percent of building density (PBD) of urban environment: A multi-index Approach Based Study in DKI Jakarta Province. Indonesian Journal of Geography, 50(2), 154–161. https://doi.org/10.22146/ijg.36113
Emil Salim Dan Pembangunan Berkelanjutan, Researchgate ___ (2017).
Burley, T. M. (1961). Land Use or Land Utilization? The Professional Geographer, 13:6, 18–20. https://doi.org/10.1111/j.0033-0124.1961.136_18.x
Castro, G. G. H., & Rocha, W. P. (2015). Change Analysis of Land Use and Urban Growth in the Municipalities of Culiacan and Navolato, Sinaloa, Mexico Using Statistical Techniques and GIS. Journal of Geographic Information System, 07(06), 620–630. https://doi.org/10.4236/jgis.2015.76050
Conahan, J., & Kyere, E. (2015). Community Readiness. In The International Journal of Interdisciplinary Social and Community Studies (Vol. 9, Issue 3). https://doi.org/10.18848/2324-7576/cgp/v10i03/53523
Eigentler, L., & Sherratt, J. A. (2020). Effects of precipitation intermittency on vegetation patterns in semi-arid landscapes. Physica D: Nonlinear Phenomena, 405. https://doi.org/10.1016/j.physd.2020.132396
El-Aziz, A. O. A. (2013). Monitoring and Change Detection along the Eastern Side of Qena Bend, Nile Valley, Egypt Using GIS and Remote Sensing. Advances in Remote Sensing, 02(03), 276–281. https://doi.org/10.4236/ars.2013.23030
Falk, D. A., van Mantgem, P. J., Keeley, J. E., Gregg, R. M., Guiterman, C. H., Tepley, A. J., JN Young, D., & Marshall, L. A. (2022). Mechanisms of forest resilience. Forest Ecology and Management, 512(February), 120129. https://doi.org/10.1016/j.foreco.2022.120129
Foody, G. M. (2002). Land Cover Classification Accuracy Assessment. Remote Sensing of Environment, 80, 185–201. https://doi.org/10.1007/978-981-16-5149-6_6
Fu, C., Song, X., Xie, Y., Wang, C., Luo, J., Fang, Y., Cao, B., & Qiu, Z. (2022). Research on the Spatiotemporal Evolution of Mangrove Forests in the Hainan Island from 1991 to 2021 Based on SVM and Res-UNet Algorithms.
Gao, B.-C. (1996). Naval Research Laboratory, 4555 Overlook Ave. Remote Sens. Environ, 7212(April), 257–266.
Gelfand, A. E., Guindani, M., & Petrone, S. (2007). Bayesian nonparametric modelling for spatial data using Dirichlet processes. Bayesian Statistics 8: Proceedings of the Eighth Valencia International Meeting, 8(October 2014), 1–26. https://www.ics.uci.edu/~mguindan/papers/GGPValencia.pdf%0Ahttp://www.math.unm.edu/~michele/Papers/GGPValencia.pdf
Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4(1), 117–124. https://doi.org/10.1016/j.ijsbe.2015.02.005
Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning A, 34(8), 1443–1458. https://doi.org/10.1068/a3496
Hu, J., Zhou, Q., Cao, Q., & Hu, J. (2022). Effects of ecological restoration measures on vegetation and soil properties in semi-humid sandy land on the southeast Qinghai-Tibetan Plateau, China. Global Ecology and Conservation, 33(December 2021), e02000. https://doi.org/10.1016/j.gecco.2022.e02000
Indrawati, L., & Cahyono, A. (2018). Pemanfaatan Data Landsat Multitemporal Untuk Pemetaan Pola Ekspansi Perkotaan Secara Spasiotemporal (Studi Kasus Pada Tiga Perkotaan Metropolitan Di Pulau Jawa). Jurnal Nasional Teknologi Terapan (JNTT), 2(1), 99. https://doi.org/10.22146/jntt.39091
Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P., & Hunt, E. R. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92(4), 475–482. https://doi.org/10.1016/j.rse.2003.10.021
Jha, S., Das, J., Sharma, A., Hazra, B., & Goyal, M. K. (2019). Probabilistic evaluation of vegetation drought likelihood and its implications to resilience across India. Global and Planetary Change, 176(February), 23–35. https://doi.org/10.1016/j.gloplacha.2019.01.014
Ji, W., Ma, J., Twibell, R. W., & Underhill, K. (2006). Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Computers, Environment and Urban Systems, 30(6), 861–879. https://doi.org/10.1016/j.compenvurbsys.2005.09.002
Jones, S. (2017). Wrestling with the Social Value of Heritage: Problems, Dilemmas and Opportunities. Journal of Community Archaeology and Heritage, 4(1), 21–37. https://doi.org/10.1080/20518196.2016.1193996
Kayiranga, A., Kurban, A., Ndayisaba, F., Nahayo, L., Karamage, F., Ablekim, A., Li, H., & Ilniyaz, O. (2016). Monitoring Forest Cover Change and Fragmentation Using Remote Sensing and Landscape Metrics in Nyungwe-Kibira Park. Journal of Geoscience and Environment Protection, 04(11), 13–33. https://doi.org/10.4236/gep.2016.411003
Landsat 8 (L8) Data Users Handbook. (2019).
Li, D., Wen, L., Zhang, W., Yang, L., Xiao, K., Chen, H., & Wang, K. (2017). Afforestation effects on soil organic carbon and nitrogen pools modulated by lithology. https://doi.org/10.1016/j.foreco.2017.05.050
Li, Y., Tian, Y. P., & Li, C. K. (2011). Comparison study on ways of ecological vulnerability assessment - A case study in the Hengyang Basin. Procedia Environmental Sciences, 10(PART C), 2067–2074. https://doi.org/10.1016/j.proenv.2011.09.323
Liu, M., Liu, X., Wu, L., Tang, Y., Li, Y., Zhang, Y., Ye, L., & Zhang, B. (2021). Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series. Ecological Indicators, 121. https://doi.org/10.1016/j.ecolind.2020.106985
Lo, C. P. (1986). Satellite remote sensing for resources development. Geocarto International, 1(4), 60. https://doi.org/10.1080/10106048609354071
Luo, M., Sa, C., Meng, F., Duan, Y., Liu, T., & Bao, Y. (2020). Assessing extreme climatic changes on a monthly scale and their implications for vegetation in Central Asia. Journal of Cleaner Production, 271. https://doi.org/10.1016/j.jclepro.2020.122396
Manfredo, M. J., Berl, R. E. W., Teel, T. L., & Bruskotter, J. T. (2021). Bringing social values to wildlife conservation decisions. Frontiers in Ecology and the Environment, 19(6), 355–362. https://doi.org/10.1002/fee.2356
Manfredo, M. J., Bruskotter, J. T., Teel, T. L., Fulton, D., Schwartz, S. H., Arlinghaus, R., Oishi, S., Uskul, A. K., Redford, K., Kitayama, S., & Sullivan, L. (2017). Why social values cannot be changed for the sake of conservation. Conservation Biology, 31(4), 772–780. https://doi.org/10.1111/cobi.12855
Manfredo, M. J., Teel, T. L., Don Carlos, A. W., Sullivan, L., Bright, A. D., Dietsch, A. M., Bruskotter, J., & Fulton, D. (2020). The changing sociocultural context of wildlife conservation. Conservation Biology, 34(6), 1549–1559. https://doi.org/10.1111/cobi.13493
Mirchooli, F., Sadeghi, S. H., & Khaledi Darvishan, A. (2020). Analyzing spatial variations of relationships between Land Surface Temperature and some remotely sensed indices in different land uses. Remote Sensing Applications: Society and Environment, 19(February), 100359. https://doi.org/10.1016/j.rsase.2020.100359
Mohamed, H. E. (2012). Analysis of urban growth at Cairo, Egypt using remote sensing and GIS. Natural Science, 4(6), 355–361. https://doi.org/http://dx.doi.org/10.4236/ns.2012.46049
Mohamed, M. A. (2017). Monitoring of Temporal and Spatial Changes of Land Use and Land Cover in Metropolitan Regions through Remote Sensing and GIS. Natural Resources, 08(05), 353–369. https://doi.org/10.4236/nr.2017.85022
Ojima, D. S., Galvin, K. A., & Turner, B. L. I. I. (1994). The global impact of land-use change. BioScience, 44(5), 300–304. https://doi.org/10.2307/1312379
Orellana-Alvear, J., Célleri, R., Rollenbeck, R., Muñoz, P., Contreras, P., & Bendix, J. (2020). Assessment of native radar reflectivity and radar rainfall estimates for discharge forecasting in mountain catchments with a random forest model. Remote Sensing, 12(12). https://doi.org/10.3390/rs12121986
Pinto-Ramos, D., Echeverría-Alar, S., Clerc, M. G., & Tlidi, M. (2022). Vegetation covers phase separation in inhomogeneous environments. Chaos, Solitons and Fractals, 163(July), 112518. https://doi.org/10.1016/j.chaos.2022.112518
Prasetyo, S. Y. J., Hartomo, K. D., Paseleng, M. C., Chandra, D. W., & Winarko, E. (2020, June 1). Satellite imagery and machine learning for aridity disaster classification using vegetation indices. Bulletin of Electrical Engineering and Informatics, 9(3), 1149–1158. https://doi.org/10.11591/eei.v9i3.1916
Prodromou, M., Danez?s, C., Gitas, I., & Hadjimitsis, D. (2021). The development of a Forest Canopy Density ( FCD ) model in Akamas National Forest Park in Cyprus , using Landsat-8 and Sentinel-2 satellite data. September, 2019–2022.
Psychological Association, A. (2022). Addressing the Climate Crisis An Action Plan for Psychologists REPORT OF THE APA TASK FORCE ON CLIMATE CHANGE APPROVED BY APA COUNCIL OF REPRESENTATIVES, FEBRUARY 2022. https://www.apa.org/science/about/publications/
Robinson, N. P., Allred, B. W., Jones, M. O., Moreno, A., Kimball, J. S., Naugle, D. E., Erickson, T. A., & Richardson, A. D. (2017). A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sensing, 9(8), 1–14. https://doi.org/10.3390/rs9080863
Sampurno, R., & Thoriq, A. (2016). Klasifikasi Tutupan Lahan menggunakan Citra Landsat 8 Operational Land Imager (OLI) di Kabupaten Sumedang. Jurnal Teknotan, 10(2), 61–70. https://doi.org/10.24198/jt.vol10n2.9
Sudipto Banerjee, Bradley P. Carlin, Alan E. Gelfand, S. B. (2019). Hierarchical Modeling and Analysis for Spatial Data.
Taherdoost, H. (2018). Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research. SSRN Electronic Journal, January 2016. https://doi.org/10.2139/ssrn.3205035
Venghaus, S., Henseleit, M., & Belka, M. (2022). The impact of climate change awareness on behavioral changes in Germany: changing minds or changing behavior? Energy, Sustainability and Society, 12(1). https://doi.org/10.1186/s13705-022-00334-8
Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46–56. https://doi.org/10.1016/j.rse.2016.04.008
Webb, T. J., Woodward, F. I., Hannah, L., & Gaston, K. J. (2005). Forest Cover-Rainfall Relationships in a Biodiversity Hotspot: The Atlantic Forest of Brazil. In Ecological Applications (Vol. 15, Issue 6). http://www.ibge.gov.br/
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
Yacouba, D., Guangdao, H., & Xingping, W. (2010). Applications of Remote Sensing in Land Use/Land Cover Change Detection in Puer and Simao Counties, Yunnan Province. Report and Opinion, 2(9), 7–16.
Yulianto, S., Chrismawati Paseleng, M., Dwi Hartomo, K., Hasiholan Simanjuntak, B., & Widiyanto Candra, D. (2019). The Machine Learning to Detect Drought Risk in Central Java Using Landsat 8 OLI Remote Sensing Images. https://doi.org/10.1109/ICST47872.2019.9166197

Most read articles by the same author(s)

1 2 3 > >>