Caffeine degradation by food microorganisms

##plugins.themes.bootstrap3.article.main##

TJAHJADI PURWOKO
SURANTO
RATNA SETYANINGSIH
SOERYA DEWI MARLIYANA

Abstract

Abstract. Purwoko T, Suranto, Setyaningsih R, Marliyana SD. 2023. Caffeine degradation by food microorganisms. Biodiversitas 24: 3495-3502. Commercial coffee beans are dominated by robusta and arabica coffee beans. Caffeine is one of the important components in coffee beans. Caffeine has antimicrobial effect. Caffeine content in robusta beans was higher than in arabica beans. Caffeine content in coffee beans was affected by the coffee species, the coffee cultivation's altitude and the postharvest processing method. Microbial fermentation activity could reduce the caffeine content of coffee beans. Lactobacillus casei, Leuconostoc mesenteroides, Rhizopus oryzae and Saccharomyces cerevisiae, were able to reduce caffeine content of robusta beans. This study aimed to determine the degradation pathway of caffeine by food microorganisms, namely L. casei, L. mesenteroides, R. oryzae and S. cerevisiae. Caffeine content in NB-caffeine and PDB-caffeine media were reduced by L. casei, L. mesenteroides, R. oryzae and S. cerevisiae. Caffeine was transformed into dimethylxanthine and then into methylxanthine by L. casei, L. mesenteroides, R. oryzae and S. cerevisiae. They transformed more than 89% caffeine into paraxanthine, however, small amount of paraxanthine was transformed into methylxanthine. L. casei and L. mesenteroides transformed paraxanthine into 1-methylxanthine. However, R. oryzae and S. cerevisiae transformed into 7-methylxanthine. There were two patterns of degradation of caffeine into methylxanthine i.e., caffeine-paraxanthine-1-methylxanthine and caffeine-paraxanthine-7-methylxanthine. The first was shown by L. casei and L. mesenteroides, and the last by R. oryzae and S. cerevisiae.

##plugins.themes.bootstrap3.article.details##

References
Adamafio NA. 2013. Theobromine toxicity and remediation of cocoa by-product: an overview. Journal Biological Science 13(7): 570-576. DOI: 10.3923/jbs.2013.570.576.
Adepoju AF, Adenuga OO, Mapayi EF, Olaniyi OO, Adepoju FA. 2017. Coffee: botany, distribution, diversity, chemical composition and its management. IOSR-JAVS 10(7): 57-62. DOI: 10.9790/2380-1007035762.
Afriliani A, Pratiwi D, Giyarto, Belgis M, Harada H, Yushiharu M, Taizo M. 2019. Volatile compounds changes in unfermented robusta coffee by re-fermentation using commercial kefir. Nutri Food Sci Int J 8(4): 555745. DOI: 10.19080/NFSIJ.2019.08.555745.
Alao J.P, Johansson-Sjölander J, Rallis C, Sunnerhagen P. 2020. Caffeine stabilises fission yeast wee1 in a Rad24-dependent manner but attenuates its expression in response to DNA damage. Microorganisms 8: 1512. DOI:10.3390/microorganisms8101512.
Arimurti S, Ardyati T, Nurani Y, Siswoyo TA, Suharjono S. 2018. Degradation of caffeine by Pseudomonas monteilii KRM9. Malays J Microbiol 14(1): 55-60.
Ashihara H. 2006. Metabolism of alkaloids in coffee plants. Braz J Plant Physiol 18(1):1-8. DOI: 10.1590/S1677-04202006000100001.
Ashihara H, Monteiro AM, Gillies FM, Crozier A. 1996. Biosynthesis of caffeine in leaves of coffee. Plant Physiol 11(1): 747-753. DOI: 10.1104/pp.111.3.747.
Chaugule A, Patil H, Pagariya S, Ingle P. 2019. Extraction of caffeine. IJARCS 6(9): 11-19. DOI: 10.20431/2349-0403.0609002.
Chung WH. 2021. Pleiotropic effects of caffeine leading to chromosome instability and cytotoxicity in eukaryotic microorganisms. J Microbiol Biotechnol 31(2): 171–180. DOI: 10.4014/jmb.2011.11042.
Evangelista, SR, Miguel MGdCP, Cordeiro CdS, Silva CF, Pinheiro ACM, Schwan RF. 2014. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process. Food Microbiology 44: 87-95. DOI: 10.1016/j.fm.2014.05.013.
Evangelista SR, Miguel MGdCP, Silva CF, Pinheiro ACM, Schwan RF. 2015. Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International Journal of Food Microbiology 210: 102-112. DOI: 10.1016/j.ijfoodmicro.2015.06.008.
Girma B, Gure A, Wedajo F. 2020. Influence of altitude on caffeine, 5-caffeoylquinic acid, and nicotinic acid contents of arabica coffee varieties. Journal of Chemistry. Article ID 39047611. DOI: 10.1155/2020/3904761.
Hakil M, Denis S, Viniegra-Gonzalez G, Augur C.1998. Degradation and product analysis of caffeine and related dimethylxanthines by filamentous fungi. Enzyme Microb Technol 22:355–359.
Ibrahim S, Shukor MY, Syed MA, Rahman NAA, Khalil KA, Khalid A, Ahmad SA. 2014. Bacterial degradation of caffeine: a review. Asian Journal of Plant Biology 2(1): 24-33. DOI: 10.54987/ajpb.v2i1.84.
Junqueira ACdO, Pereira GVdM, Medina JDC, Alvear MCR, Rosero R, Neto DPdC, Enríquez HG, Soccol CR. 2019. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports 9:8794. DOI:10.1038/s41598-019-45002-8.
Mazzafera, P. 2004. Catabolism of caffeine in plants and microorganisms. Frontiers in Bioscience 9: 1348-1359. DOI: 10.2741/1339.
Mubarok F, Suwasono S, Palupi NW. 2014. Perubahan kadar kafein biji kopi arabika hasil pengolahan semi basah dengan perlakuan variasi jenis wadah dan lama fermentasi. Berkala Ilmiah Pertanian 1(1):1-7. [Indonesian]
Mukhtar I, Iftikhar A, Imran M, Ijaz MU, Irfan S, Anwar H. 2021. The competitive absorption by the gut microbiome suggests the first-order absorption kinetics of caffeine. Dose-Response 19(3):15593258211033111. DOI: 10.1177/15593258211033111.
Nonthakaew A, Matan N, Aewsiri T, Matan N. 2015. Caffeine in foods and its antimicrobial activity. IFRJ 21(6): 9-14.
Patay EB, Fritea L, Antonescu A, Antonescu A, Dobjanschi L. 2017. Coffea arabica: a plant with rich content in caffeine. In: Latosi?ska JN, Latosi?ska M (eds). The question of caffeine. IntechOpen. DOI: 10.5772/intechopen.68149.
Pinheiro PF, Pinheiro CA, Osório FM, Pereira LL. 2020. Chemical constituents of coffee. In: Pereira LL, Moreira TR (eds). 2020. Quality determinants in coffee. DOI: 10.1007/978-3-030-54437-9_5.
Purwoko T, Suranto, Setyaningsih R, Marliyana DS. 2022. Chlorogenic acid and caffeine content of fermented robusta bean. Biodiversitas 23(2): 902-906. DOI: 10.13057/biodiv/d230231.
Randriani E, Dani, Supriadi H, Syafaruddin. 2016. Ekspresi fenotipik klon kopi robusta “Sidodadi” pada tiga ketinggian tempat. J. TIDP 3(3): 151-158. [Indonesian]
Summers RM, Mohanty SK, Gopishetty S, Subramanian M. 2015. Genetic characterization of caffeine degradation by bacteria and its potential applications. Microbial Biotechnology 8(3): 369–378. DOI:10.1111/1751-7915.12262.
Szlapinski SK, Charrette A, Guthrie N, Hilmas CJ. 2023. Paraxanthine safety and comparison to caffeine. Front Toxicol 5:1117729. DOI: 10.3389/ftox.2023.1117729.
Tagliari CV, Sanson RK, Zanette A, Franco TT, Soccol CR. 2003. Caffeine degradation by Rhizopus delemar in packed bed column bioreactor using coffee husk as substrate. Brazilian Journal of Microbiology 34(Suppl.1):102-104.
Worku M, Meulenaer Bd, Duchateauc L, Boeckx P. 2020. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International 105: 278–285. DOI: 10.1016/j.foodres.2017.11.016.
Zhou B, Ma V, Wang H, Xia T. 2018. Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation. BMC Microbiology 18:53. DOI: 10.1186/s12866-018-1194-8.

Most read articles by the same author(s)

1 2 3 4 > >>