New records of the diversity of Scleroderma spp. from Papua, Indonesia

##plugins.themes.bootstrap3.article.main##

SUPENI SUFAATI
SUHARNO
VERENA AGUSTINI
NUTTIKA SUWANNASAI

Abstract

Abstract. Sufaati S, Suharno, Agustini V, Suwannasai N. 2023. New records of the diversity of Scleroderma spp. from Papua, Indonesia. Biodiversitas 24: 4269-4276. Papuan forest is one of the highest diversity tropical rainforests in the world. However, in some areas it is undergoing in process of land degradation. Reforestation using local plant inoculated with native mycorrhiza may have better results since they will be more adaptable. Mycorrhiza helps in plant nutrient uptake and ameliorates heavy metals in mining areas. Genus Scleroderma is a group of ectomycorrhiza that can be found at early stage of succession. However, to date there has been little study on its taxonomy. This study was conducted to construct the database on the diversity of Scleroderma spp. in Papua, Indonesia. Samples were collected from several areas in the provinces of Papua and West Papua from 2003 to 2022. Morphological characters and its habitat were observed. The results show, that 23 isolates had been documented. Molecular identification using ITS sequences was used to confirm the Scleroderma to the species level. The results found at least 3 species of Scleroderma, namely: Scleroderma suthepense, S. xanthochroum, and S. sinnamariense were identified based on morphological and molecular analysis, while S. citrinum was identified morphologically. This finding provides new data on the distribution of Sclerodermataceae in Papua. The results of this preliminary study are important for selecting native Scleroderma spp. for inoculation programs in degraded land.

##plugins.themes.bootstrap3.article.details##

References
Agustini V, Sufaati S, Suharno. 2009. Mycorrhizal association of terrestrial orchids of Cycloops Nature Reserve, Jayapura. Biodiversitas. 10(4): 175–180. https://doi.org/10.13057/biodiv/d100403.
Agustini V, Sufaati S, Suharno, Suwannasai N. 2016. Rhizoctonia-like fungi isolated from roots of Dendrobium lancifolium var. papuanum and Calanthe triplicata in Papua, Indonesia. Biodiversitas. 17(1): 377–383. https://doi.org/10.13057/BIODIV/D170151.
Almeida SO, Melanda GCS, Ferreira RJ, Assis NM, Oliveira UM, Baseia IG. 2021. Rediscovery of Scleroderma anomalosporum Baseia, B.D.B. Silva & M.P. Martín (Boletales, Basidiomycota) in the Brazilian Amazon: Is the species now safe?. Current Research in Environmental and Applied Mycology. 11: 364–372. https://doi.org/10.5943/CREAM/11/1/27.
Baseia IG, Silva BDB, Ishikawa NK, Soares JVC, França IF, Ushijima S, Maekawa N, Martín MP. 2016. Discovery or extinction of new Scleroderma species in amazonia?. PLoS ONE. 11(12): 1–19. https://doi.org/10.1371/journal.pone.0167879.
Bechem EET, Alexander IA. 2012. mycorrhiza status of Gnetum spp. in Cameroon:evaluating diversity with a view to ameliorating domestication efferts. Mycorrhiza. 22: 99-108. https://doi.org/10.1007/s00572-011-0384-0.
Brearley FQ. 2011. The importance of ectomycorrhizas for the growth of Dipterocarps and the efficacy of ectomycorrhizal innoculation schemes. In: M. Rai and A. Varma (eds.) Diversity and Biotechnology of Ectomycorrhizae. Soil Bilogy. 25. http://doi.org/10.1007/978-642-15196-5_1.
Chandrasikul A, Suwanarit P, Sangwanit U, Lumyong S, Payapanon A, Sanoamuang N, Pukahuta C, Petcharat V, Sardsud U, Duengkae K, Klinhom U, Thongkantha S, Thongkantha S. 2011. Checklist of mushrooms (Basidiomycetes) in Thailand. Office of Natural Resources and Environmental Policy and Planning, Bangkok, Thailand.
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes ? application to the identification of mycorrhizae and rusts. Molecular Ecology. 2(2): 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x.
Guzmán G, Cortés-Pérez A, Guzmán-Dávalos L, Ramírez-Guillén F, Sánchez-Jácome MDR. 2013. An emendation of Scleroderma, new records, and review of the known species in Mexico. Revista Mexicana de Biodiversidad. 84: S173-S191. https://doi.org/10.7550/rmb.31979.
Helbert, Turjaman M, Nara K. 2019. Ectomycorrhizal fungal communities of secondary tropical forests dominated by Tristaniopsis in Bangka Island, Indonesia. PLoS ONE. 14(9): 1–9. https://doi.org/10.1371/journal.pone.0221998.
Henrion B, Tacon F, Le Martin F. 1992. Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes. New Phytologist. 122(2): 289–298. https://doi.org/10.1111/j.1469-8137.1992.tb04233.x.
Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Zhang N. 2007. A higher-level phylogenetic classification of the Fungi. Mycological Research, 111(5): 509–547. https://doi.org/10.1016/j.mycres.2007.03.004.
Jacobson KM, Miller OK, Turner BJ. 1993. Randomly amplified polymorphic DNA markers are superior to somatic incompatibility tests for discriminating genotypes in natural populations of the ectomycorrhizal fungus Suillus granulatus. Proc. Natl. Acad. Sci. 90: 9159–9163.
Junghuns DT, Gomes EA, Guimaraes WF, Barros EG, Araujo EF. 1998. Genetic diversity of the ectomycorrhizal fungi Pisolithus tinctorius based on RAPD-PCR analysis. Mycorrhiza. 7: 243–248.
Kadir A, Tanjung RHR, Suharno, Rumahorbo BT, Reza MA. 2020. Soil physicochemical and ethnobiological studies on the peat swamp forests of Southern Papua, Indonesia. Biodiversitas. 21(4): 1714–1722. https://doi.org/10.13057/biodiv/d210454.
Ka?ucka IL, Jagodzi?ski AM. 2016. Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: A review. Dendrobiology. 76: 91–104. https://doi.org/10.12657/denbio.076.009.
Kebert M, Kosti? S, Zlatkovi? M, Stojnic S, ?apelja E, Zori? M, Kiprovski B, Budakov D, Orlovi? S. 2022. Ectomycorrhizal fungi modulate biochemical response against powdery mildew disease in Quercus robur L. Forests. 13: 1491. https://doi.org/10.3390/f13091491.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33(7): 1870–1874. https://doi.org/10.1093/MOLBEV/MSW054.
Kumla J, Suwannarach N, Bussaban B, Lumyong S. 2013. Scleroderma suthepense, A new ectomycorrhizal fungus from Thailand. Mycotaxon. 123: 1–7. https://doi.org/10.5248/123.1.
Montagner DF, Coelho G, Silveira AO, Baldoni DB, Antoniolli ZI. 2015. Morphological and molecular analyses in Scleroderma (Basidiomycota) associated with exotic forests in Pampa biome, Southern Brazil. Mycosphere. 6(3): 337–344. https://doi.org/10.5943/mycosphere/6/3/9.
Mrak T, Kühdorf K, Grebenc T, Straus I, Müncenberger B, Kraigher H. 2016. Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L. Mycorrhiza. 26: 66-75. https://doi.org/10.1007/s00572-016-0748-6.
Nouhra ER., Caffot MLH, Pastor N, Crespo EM. 2012. The species of Scleroderma from Argentina, including a new species from the Nothofagus forest. Mycologia. 104(2): 488–495. https://doi.org/10.3852/11-082.
Nugroho JD, Mansur I, Purwito A, Suhendang E. 2010. Morphological characteristics of ectomycorrhizas on merbau [Intsia bijuga (Colebr.) O. Kuntze]. HAYATI, Journal of Biosciences. 17(2): 68–72. https://doi.org/10.4308/hjb.17.2.68.
Putra IP. 2020. Scleroderma spp. in Indonesia?: Poisoning case and potential utilization. Justek?: Jurnal Sains Dan Teknologi. 3(2): 37. https://doi.org/10.31764/justek.v3i2.3517.
Phosri C, Martín MP, Watling R, Jeppson M, Sihanonth P. 2009. Filogenia moleculary reevaluación de algunas especies de Scleroderma. Anales Del Jardin Botanico de Madrid. 66(S1): 83–91. https://doi.org/10.3989/ajbm.2199.
Raut JK, Basukala O, Shrestha R, Poudel RC. 2020. Scleroderma nastii sp. nov., a gasteroid mushroom from Phulchoki Hill, Nepal. Studies in Fungi. 5(1): 50–58. https://doi.org/10.5943/sif/5/1/4.
Rusevska K, Karadelev M, Phosri C, Dueñas M, Watling R, Martín MP. 2014. Rechecking of the genus Scleroderma (Gasteromycetes) from Macedonia using barcoding approach. Turkish Journal of Botany. 38(2): 375–385. https://doi.org/10.3906/bot-1301-36.
Schoch CL, Robbertse B, Robert V, Vu D, Cardinali G, Irinyi L, Meyer W, Nilsson RH, Hughes K, Miller AN, Kirk PM, Abarenkov K, Aime MC, Ariyawansa HA, Bidartondo M, Boekhout T, Buyck B, Cai Q, Chen J, …Federhen S. 2014. Finding needles in haystacks: Linking scientific names, reference specimens and molecular data for fungi. Database. 2014: 1–21. https://doi.org/10.1093/database/bau061.
Sims KP, Watling R, Jeffries P. 1995. A revised key to the genus Scleroderma. Mycotaxon. 56: 403-420.
Sufaati S, Agustini V, Suharno. 2016. Fusarium as endophyte of some terrestrial orchid from Papua, Indonesia. Biodiversitas. 17(1): 366–371. https://doi.org/10.13057/biodiv/d170149.
Suharno, Rahayu I, Tanjung RHR, Sufaati S. 2022. New record of arbuscular mycorrhizal fungi (AMF) association with kebar grass (Biophytum petersianum Klotzsch.) in the grassland area of Kebar, Tambrauw Regency, West Papua, Indonesia. Journal of Tropical Biodiversity and Biotechnology. 7(2): 1–15. https://doi.org/10.22146/jtbb.70021.
Suharno, Soetarto ES, Sancayaningsih RP, Kasiamdari RS. 2017. Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas. 18(1): 433–441. https://doi.org/10.13057/biodiv/d180157.
Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution. 10(3): 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023.
Taylor AFS, Alexander I. 2005. The ectomycorrhizal symbiosis: Life in the real world. Mycologist. 19(3): 102–112. https://doi.org/10.1017/S0269-915X(05)00303-4.
Tian F, Liao XF, Wang LH, Bai XX, Yang YB, Luo ZQ, Yan FX. 2022. Isolation and identification of beneficial orchid mycorrhizal fungi in Paphiopedilum barbigerum (Orchidaceae). Plant Signaling and Behavior. 17(1): 1–11. https://doi.org/10.1080/15592324.2021.2005882.
Watling R. 2006. The sclerodermatoid fungi. Mycoscience. 47(1): 18–24. https://doi.org/10.1007/s10267-005-0267-3.
Weidlich EWA, Mioto PT, Furtado ANM, Ferst LM, Ernzen JP, Neves MA. 2020. Using ectomycorrhizae to improve the restoration of Neotropical coastal zones. Restoration Ecology. 28(6): 1324–1326. https://doi.org/10.1111/rec.13284.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. A guide to Methods and Application. 38: 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1.
Zhang YZ, Sun CY, Sun J, Zhang KP, Zhang HS, Guo X, Zhou YJ, Zheng DS, Li HJ. 2020. Scleroderma venenatum sp. Nov., S. venenatum var. macrosporum var. Nov. and S. suthepense new to China. Phytotaxa. 438(2): 107–118. https://doi.org/10.11646/phytotaxa.438.2.4.
Zuo R, Zou F, Tian S, Masabni J, Yuan D, Xiong H. 2022. Differential and interactive effects of Scleroderma sp. and inorganic phosphate on nutrient uptake and seedling quality of Castanea henryi. Agronomy. 12(4): 901. https://doi.org/10.3390/agronomy12040901.

Most read articles by the same author(s)

<< < 1 2