Characterization of type I L-asparaginase encoding gene from the thermohalophilic bacterium Bacillus subtilis CAT3.4 from Wawolesea Hot Spring, Southeast Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

MUZUNI
MUHAMAD ILHAM
ARDIANSYAH
SURIANA
YUTRIANA PUTRI
KARTINA

Abstract

Abstract. Muzuni, Ilham M, Ardiansyah, Suriana, Putri Y, Kartina. 2023. Characterization of type I L-asparaginase encoding gene from the thermohalophilic bacterium Bacillus subtilis CAT3.4 from Wawolesea Hot Spring, Southeast Sulawesi, Indonesia. Biodiversitas 24: 5167-5178. This study aims to determine the molecular characteristics of the gene encoding type 1 L-asparaginase from CAT3.4 thermohalophilic bacterial isolates from the hot springs of Wawolesea, North Konawe, Southeast Sulawesi. This enzyme can be used as a cancer therapy agent and prevents the formation of acrylamide in food products. It is a kind of exploratory research. The characterization was done by amplifying the ansA gene sequence encoding L-asparaginase from CAT3.4 isolate by polymerase chain reactions (PCR) technique using primers AsnBac1-F1 (5'-ACGCGATATTTCTTTTGGCCGG-3') and AsnBac1-R1 (5'-CAGTGAAGAGGTGCATGGTATG-3'). The amplified PCR product was used as a template for sequencing by the Sanger method. The amino acid coding regions (CDS) obtained were bioinformatically characterized using the NCBI website for BLASTn analysis, restriction site and hydrophobicity profiles were analyzed using the BioEdit program, phylogenetic tree was analyzed using the MEGA X program, and type 1 L-asparaginase amino acid sequence was analyzed using the Expasy translate program. The characterization results showed that the target gene has a high similarity to the ansA gene sequence of 20 Bacillus subtilis strains, i.e., 99-100%, is closely related to the ansA gene of Bacillus subtilis strain SRCM103629 and Bacillus subtilis strain GOT9, can be identified using restriction enzymes MluI and BstI to differentiate the species of organisms they produce, has CDS encoding 329 amino acids with a dominant composition of polar amino acids (54.1%) and has a hydrophobicity profile of amino acids dominated by hydrophilic regions. All these characteristics have confirmed that the characterized gene is the ansA gene encoding type 1 L-asparaginase from Bacillus subtilis. The finding of the ansA gene from Bacillus subtilis in a thermohalophilic region in Southeast Sulawesi, Indonesia is a novelty of the research.

##plugins.themes.bootstrap3.article.details##

References
Al-Atiyat R, Aljumaah RS. 2014. Genetic distances and phylogenetic trees of different Awassi sheep populations based on DNA sequencing. Journal of Genetics and Molecular Research 13(3):6557-6568. DOI: 10.4238/2014.August.26.6.
Alfin. 2018. Phenotypic and Molecular Characterization of Potential L-Asparaginase Producing Thermohalophilic Bacteria from Wawolesea Hot Springs North Konawe Southeast Sulawesi. [Thesis]. Halu Oleo University, Kendari. [Indonesia].
Al Yousef SA. 2022. Fusarium sp. L-asparaginases: purification, characterization, and potential assessment as an antileukemic chemotherapeutic agent. Environ Sci Pollut Res 29: 11243–11254. DOI: 10.1007/s11356-021-16175-5
Andriani Y, Safitri R, Rochima E, Fakhrudin SD. 2017. Characterization of Bacillus subtilis and B. licheniformis potentials as probiotic bacteria in Vanamei Shrimp Feed (Litopenaeus vannamei Boone, 1931). Nusantara Bioscience 9(2):188-193. DOI: 10.13057/nusbiosci/n090214
Mortier-Barrière I, Polard P, Campo N. 2020. Direct visualization of horizontal gene transfer by transformation in live Pneumococcal cells using microfluidics. Genes (Basel). 11(6): 675. DOI: 10.3390/genes11060675.
Bhattacharya D, Villalobos SDLS, Ruiz VV, Selvin J, Mukherjee J. 2020. Bacillus rugosus sp. nov. producer of a diketopiperazine antimicrobial, isolated from marine sponge Spongia officinalis L. Antonie van Leeuwenhoek. DOI:10.1007/s10482-020-01472-9
Bisht SS, Panda K. 2014. Advance In Biotechnology: DNA Sequencing Method and Application. Springer, India
Ho WC, Zhang J. 2018. Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nat Commun 9: 350. DOI: 10.1038/s41467-017-02724-5
Chu XL, Zhang BW, Zhang QG, Zhu BR, Lin K, Zhang DY. 2018. Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC Evol Biol 18(1): 126. DOI: 10.1186/s12862-018-1252-8
DeRisi JL, Huber G, Kistler A, Retallack H, Wilkinson M, Yllanes D. 2019. An Exploration of Ambigrammatic Sequences in Narnaviruses. Scientific Reports 9(1):17982. DOI: 10.1038/s41598-019-54181-3
Dill KA, MacCallum JL. 2012. The protein-folding problem, 50 years on. Science 338(6110):1042–1046. DOI: 10.1126/science.1219021
Sahoo S, Shivani K, Padhy AA, Kumari V, Mishra P. 2023. Principles, methods, and applications of protein folding inside cells. In: Saudagar, P., Tripathi, T. (eds) Protein Folding Dynamics and Stability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2079-2_13
Kuwabara T, Prihanto AA, Wakayama M, Takagi K. 2015. Purification and characterization of Pseudomonas aeruginosa PAO1 Asparaginase. Procedia Environ Sci 28: 72–77. DOI:10.1016/j.proenv.2015.07.011
Kuroda D, Gray JJ. 2016. Shape complementarity and hydrogen bond preferences in protein–protein interfaces: implications for antibody modeling and protein–protein docking. Bioinformatics 32(16): 2451–2456. DOI: 10.1093/bioinformatics/btw197
Gatson JW, Benz BF, Chandrasekaran C, Satomi M, Venkateswaran K, Hart ME. 2006. Bacillus tequilensis Sp. Nov., isolated from a 2000-year-old mexican shaft-tomb, is closely related to Bacillus subtilis. Int J Syst Evol Microbiol 56(7):1475–1484. DOI: 10.1099/ijs.0.63946-0
Mihooliya KN, Nandal J, Kumari A, Nanda S, Verma H, Sahoo DK. 2020. Studies on efficient production of a novel L-asparaginase by a newly isolated Pseudomonas resinovorans IGS-131 and its heterologous expression in Escherichia coli. 3 Biotech 10(4): 148. DOI: 10.1007/s13205-020-2135-4.
Gibson B, Eyre-Walker A. 2019. Investigating evolutionary rate variation in bacteria. J Mol Evol 87(9): 317–326. DOI: 10.1007/s00239-019-09912-5
Hermono BAS, Bintari SH, Mustikaningtyas D. 2017. Identification of Salmonella sp in Fruit Juice Snacks in Gunungpati District, Semarang by PCR. Jurnal MIPA 40(2): 68-73.
Higgs T, Stantic B, Hoque T, Sattar A. 2017. Hydrophobic-hydrophilic forces and their effects on protein structural similarity. Monash University. Dataset. https://doi.org/10.4225/03/5a13709f243b5
Iqbal M, Buwono ID, Kurniawati. 2016. Comparative Analysis of DNA Isolation Methods for Detection of White Spot Syndrome Virus (WSSV) in Vaname Shrimp (Litopeneaeus vannamei). Journal of Fisheries and Maritime Affairs 7(1):1-9
Jamaluddin J, Alfin A, Muzuni M, Yanti NA. 2018. Exploration of Thermohalophilic Bacteria Producing L-Asparaginase in Wawolese Hot Springs, Southeast Sulawesi. Biowallacea: Journal of Biological Research 5(1):1-9.
Jiao L, Chi H, Lu Z, Zhang C, Chia SR, Show PL, Tao Y, Lu F. 2020. Characterization of a novel type I L-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. J Biosci Bioeng 129(6): 672-678. DOI: 10.1016/j.jbiosc.2020.01.007
Loch JI, Jaskolski M. 2021. Structural and biophysical aspects of L-asparaginases: a growing family with amazing diversity. IUCrJ 8(Pt 4):514-531. DOI: 10.1107/S2052252521006011.
Kishore V, Nishita KP, Manonmani HK. 2015. Cloning, expression and characterization of L-asparaginase from Pseudomonas fluorescens for large scale production in E. coli BL21. 3 Biotech 5: 975–981. DOI: 10.1007/s13205-015-0300-y
Maurya KG. 2019. Restriction Enzyme. Encyclopedia of Animal Cognition and Behavior. Switzerland: Springer Nature. p.1-4.
Muzuni, Yanti NA, Prasetya WM. 2021. Characterization of the gene encoding chitinase enzyme from bacillus isolates insulated from some locations in Southeast Sulawesi. Journal of Physics: Conference Series 1899: 012017. DOI:10.1088/1742-6596/1899/1/012017
Narita V, Arum AL, Isnaeni SM, Fawzya NY. 2012. Web-Based Bioinformatics Analysis for Exploration of Chitonase Enzymes Based on Sequence Similarities. Jurnal Al-Azhar Indonesia Seri Sains dan Teknologi 1(4):197-203
Sengupta S, Biswas M, Gandhi K, Gota V, Sonawane A. 2021. Pre-Clinical Evaluation of Novel L-Asparaginase Mutants for the Treatment of Acute Lymphoblastic Leukemia. Blood 2021; 138 (Supplement 1): 4919. doi: https://doi.org/10.1182/blood-2021-150857
Negi DS, Shrivastava P, Das SP. 2014. DNA sequencing by polymer synthesis with variable ratio of deoxynucleoside triphosphate and fluorescent dideoxynucleotide triphosphate. Asian J Biomed Pharm Sci 4(32):32-38. DOI:10.15272/ajbps.v4i32.495
Pearson WR. 2013. An Introduction to Sequence Similarity (“Homology”) Searching. Curr Protoc Bioinformatics. DOI: 10.1002/0471250953.bi0301s42
Dumina M, Zhgun A. 2023. Thermo-L-Asparaginases: from the role in the viability of thermophiles and hyperthermophiles at high temperatures to a molecular understanding of their thermoactivity and thermostability. Int J Mol Sci 24(3):2674. https://doi.org/10.3390/ijms24032674
PubChem-NCBI. 2023. https://pubchem.ncbi.nlm.nih.gov/compound/Asparagine, diakses 22 Mei 2023.
Nanni L, Lumini A, Brahnam S. 2014. An empirical study of different approaches for protein classification. Sci World J 2014: 1-17. https://doi.org/10.1155/2014/236717
Ren J, Zhenhua L. 2011. A PPY/PT for assaying L-asparaginase activity in Proteus vulgaris the construction and application of the piezoelectric transducer; International Conference on New Technology of Agricultural, Zibo, 2011, pp. 845-848. DOI: 10.1109/ICAE.2011.5943923.
Roberts MS, Nakamura LK, Cohan FM. 1996. Bacillus vallismortis sp. Nov., a close relative of Bacillus Subtilis, isolated from soil in Death Valley, California. Int J Syst Bacteriol 46(2):470–475. DOI: 10.1099/00207713-46-2-470
Rohit A, Maiti B, Shenoy S, Karunasagar I. 2016. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) for rapid diagnosis of neonatal sepsis. Indian J Med Res 143(1):72-78. DOI: 10.4103/0971-5916.178613
Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. 3rd Edition, Vol. 1, Cold Spring Harbor Laboratory Press, New York.
Jordan JA, Lenski RE, Card KJ. 2022. Idiosyncratic fitness costs of ampicillin-resistant mutants derived from a long-term experiment with Escherichia coli. Antibiotics: 11(3):347. DOI: 10.3390/antibiotics11030347
Schrappe M, Reiter A, Zimmermann M, Harbott J, Ludwig WD, Henze G, Gadner H, Odenwald E, Riehm H. 2000. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM Study Group from 1981 to 1995, Berlin–Frankfurt–Munster. Leukemia 14(12): 2205–2222. DOI: 10.1038/sj.leu.2401973
Shakambari G, Ashokkumar B, Varalakshmi P. 2019. L-Asparaginase: a promising biocatalyst for industrial and clinical applications. Biocatal Agric Biotechnol. DOI: 10.1016/j.bcab.2018.11.018
Shamir R. 2001. Lecture 8: Algorithms for molecular biology, Tel Aviv University, Israel. http://www.cs.tau.ac.il/~rshamir/algmb/01/scribe08/lec08.pdf
Sharafi Z, Barati M, Khoshayand MR, Adrangi S. 2017. Screening For Type II L-Asparaginases: Lessons From The Genus Halomonas. Iran J Pharm Res 16(4):1565-1573. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843318/
Sune D, Rydberg H, Augustinsson ÅN, Serrander L, Jungeström MB. 2020. Optimization of 16S rRNA gene analysis for use in the diagnostic clinical microbiology service. J Microbiol Methods 170: 105854. DOI: 10.1016/j.mimet.2020.105854
Cachumba JJM, Antunes FAF, Peres GFD, Brumano LP, Santos JC, Da Silva SS. 2016. Current applications and different approaches for microbial L-asparaginase production. Braz J Microbiol S1517838216310358. DOI:10.1016/j.bjm.2016.10.004
Van Rossum T, Ferretti P, Maistrenko OM, Bork P. 2020. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 18(9): 491-506. DOI:10.1038/s41579-020-0368-1
Vasudevan D, Vaidyanathan K. 2017. Textbook of Biochemistry for Medical Students, Chapter-04 Proteins: Structur and Function, Amrita Institute of Medical Science and Research Center, pp. 36-51. DOI:10.5005/jp/books/13014_5
Weller C, Wu M. 2015. A generation-time effect on the rate of molecular evolution in bacteria. Evolution 69(3):643–652. DOI: 10.1111/evo.12597
Wheeler D, Bhagwat M. 2007. BLAST Quickstart: Example-Driven Web-Based BLAST Tutorial. Methods Mol Biol 395:149-176. DOI:10.1007/978-1-59745-514-5_9
Di Felice F, Micheli G, Camilloni G. 2019. Restriction enzymes and their use in molecular biology: An overview. J Biosci 44:38. DOI: 10.1007/s12038-019-9856-8
Mou Y, Huang PS, Hsu FC, Mayo SL. 2015. Computational design and experimental verification of a symmetric protein homodimer. PNAS 112(34): 10714-10719. DOI: 10.1073/pnas.1505072112