Isolation and characterization of potential indigenous bacteria from the former bauxite mining area for heavy metal reduction

##plugins.themes.bootstrap3.article.main##

TRISNA AMELIA
LILIASARI
KUSNADI
PINGKAN ADITIAWATI

Abstract

Abstract. Amelia T, Liliasari, Kusnadi, Aditiawati P. 2023. Isolation and characterization of potential indigenous bacteria from the former bauxite mining area for heavy metal reduction. Biodiversitas 24: 5096-5104. This study aimed to isolate, identify, and characterize some indigenous bacterial strains from the former bauxite mining area of Tanjungpinang, Bintan Island, Indonesia. Furthermore, this study focused on evaluating the potential of these bacteria for reducing the heavy metals lead (Pb) and chromium (Cr). The measurements of heavy metal concentrations at four sampling points, collection of soil samples as a bacteria source, and laboratory assessments for bio-removal capabilities were all conducted. Screening experiments were performed to identify bacterial strains resistant to heavy metal, using basic growth media such as Nutrient Agar (NA) and Nutrient Broth (NB) enriched with 100 ppm Pb and Cr metals. The reduction of heavy metal was analyzed with atomic absorption spectrophotometry (AAS), while the bacteria species were determined using MALDI TOF-MS. A modified version of the Kirby Bauer method was employed for toxicity reduction testing. Two bacterial strains were identified as Pb and Cr reducers and demonstrated resistance to both metals. Based on a 99.9% similarity value, the isolates were identified as Bacillus altitudinis (Isolate A) and Klebsiella pneumoniae (Isolate B), reducing Pb by approximately 72.7% and 34.5%, and Cr by 87.4% and 86.2%, respectively. The results indicated reduced toxicity in the metal-enriched media, with bacterial growth following three hours of incubation but no toxicity after 21 hours.

##plugins.themes.bootstrap3.article.details##

References
Ahemad, M. 2019. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry, 12(7), 1365–1377. https://doi.org/10.1016/j.arabjc.2014.11.020
Alotaibi, B. S., Khan, M., & Shamim, S. 2021. Unraveling the underlying heavy metal detoxification mechanisms of bacillus species. Microorganisms, 9(8). https://doi.org/10.3390/microorganisms9081628
Anno, F. D., Brunet, C., Zyl, L. J. Van, Trindade, M., Golyshin, P. N., Anno, A. D., Ianora, A., & Sansone, C. 2020. Degradation of Hydrocarbons and Heavy Metal Reduction by Marine Bacteria in Highly Contaminated Sediments. Microorganisms, 8(1402), 1–18.
Anusha, P., & Natarajan, D. 2020. Bioremediation potency of multi metal tolerant native bacteria Bacillus cereus isolated from bauxite mines, kolli hills, Tamilnadu- A lab to land approach. Biocatalysis and Agricultural Biotechnology, 25(March), 101581. https://doi.org/10.1016/j.bcab.2020.101581
Atikpo, E., & Ihimekpen, N. I. 2020. Bioremediation of Lead Contaminated Agricultural Soil using Klebsiella pneumoniae. Journal of Applied Sciences and Environmental Management, 24(5), 805–808. https://doi.org/10.4314/jasem.v24i5.11
Babar, Z., Khan, M., Chotana, G. A., Murtaza, G., & Shamim, S. 2021. Evaluation of the Potential Role of Bacillus altitudinis MT422188 in Nickel Bioremediation from Contaminated Industrial Effluents.
Batta, N., Subudhi, S., Lal, B., & Devi, A. 2013. Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: Assessment of bioflocculant activity. Indian Journal of Experimental Biology, 51(11), 1004–1011.
Clark, C. M., Costa, M. S., Sanchez, L. M., & Murphy, B. T. 2018. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. PNAS, 115(19), 4981–4986. https://doi.org/10.1073/pnas.1801247115
Croxatto, A., Prod, G., & Greub, G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev, 36, 380–407. https://doi.org/10.1111/j.1574-6976.2011.00298.x
Damayanti, R., & Khareunissa, H. 2017. Composition and characteristics of red mud: A case study on Tayan bauxite residue from alumina processing plant at West Kalimantan. Indonesian Mining Journal, 19(3), 179–190. https://doi.org/10.30556/imj.vol19.no3.2016.660
Gräfe, M., Landers, M., Tappero, R., Klauber, C., Hutomo, G., Gan, B., Grabsch, A., Austin, P., & Davies, I. 2010. Chemistry of trace and heavy metals in bauxite residues (red mud) from Western Australia. Soil Solutions for a Changing World, August 2010, 39–42.
Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. 2018. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. 2018.
Kaczorek, E. 2012. Effect of External Addition of Rhamnolipids Biosurfactant on the Modification of Gram-Positive and Gram-Negative Bacteria Cell Surfaces during Biodegradation of Hydrocarbon Fuel Contamination. Polish Journal of Environmental Studies, 21(4), 901–909.
Khalil, A., Shaikh, S., & Tawabini, B. 2022. Removal of heavy metals from contaminated water by thermophilic bacteria isolated from hot springs in Saudi Arabia. Journal of Bacteriology & Mycology: Open Access, 10(3), 60–64. https://doi.org/10.15406/jbmoa2022.10.00328
Khan, M., Ijaz, M., Chotana, G. A., Murtaza, G., Malik, A., & Shamim, S. 2022. Bacillus altitudinis MT422188: a potential agent for zinc bioremediation. Bioremediation Journal, 26(3), 228–248. https://doi.org/10.1080/10889868.2021.1927973
Khan, M., Kamran, M., Kadi, R. H., Hassan, M. M., Elhakem, A., Sakit ALHaithloul, H. A., Soliman, M. H., Mumtaz, M. Z., Ashraf, M., & Shamim, S. 2022. Harnessing the Potential of Bacillus altitudinis MT422188 for Copper Bioremediation. Frontiers in Microbiology, 13(May). https://doi.org/10.3389/fmicb.2022.878000
Kim, S. W., Chae, Y., Moon, J., Kim, D., Cui, R., An, G., Jeong, S. W., & An, Y. J. 2017. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils. Journal of Agricultural and Food Chemistry, 65(6), 1239–1246. https://doi.org/10.1021/acs.jafc.6b04339
Kowalczyk, P., & Kramkowski, K. 2023. Bioremediation of Heavy Metals by the Genus Bacillus.
KY, L., LY, H., YY, T., SP, L., AM, Q., T, P., & R, N. 2017. Environmental and Occupational Health Impact of Bauxite Mining in Malaysia. International Medical Journal Malaysia, 16(2), 137–150.
Lara, P., Morett, E., Juárez, K., Biotecnología, I. De, Universidad, A., & Cp, M. 2007. Isolation And Characterization of a Cr (Vi) -Reducing Klebsiella Pneumoniae with Potential Application In Bioremediation And Waste Water Treatment. 174(Vi), 62210.
Marzan, L. W., Hossain, M., Mina, S. A., Akter, Y., & Chowdhury, A. M. M. A. 2020. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. The Egyptian Journal of Aquatic Research, 43(1), 65–74. https://doi.org/10.1016/j.ejar.2016.11.002
Mohan, A. K., Chiplunkar, S., Kamath, S., Martis, S., Goveas, L., & Rao, V. 2019. Heavy metal tolerance of Klebsiella pneumoniae kpn555 isolated from coffee pulp waste. Borneo Journal of Resource Science and Technology, 9(2), 101–106.
Ndeddy Aka, R. J., & Babalola, O. O. 2017. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mines tailings. Bioremediation Journal, 21(1), 1–19. https://doi.org/10.1080/10889868.2017.1282933
Newsome, L., & Falagán, C. 2021. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GeoHealth, 5(10), 1–53. https://doi.org/10.1029/2020GH000380
Nogueira, E. W., Hayash, E. A., Alves, E., Lima, A., Adorno, M. T., & Brucha, G. 2017. Characterization of Alkaliphilic Bacteria Isolated from Bauxite Residue in the Southern Region of Minas Gerais, Brazil. 60(December), 1–7.
Orji, O. U., Awoke, J. N., Aja, P. M., Aloke, C., Obasi, O. D., Alum, E. U., Udu-Ibiam, O. E., & Oka, G. O. 2021. Halotolerant and metalotolerant bacteria strains with heavy metals biorestoration possibilities isolated from Uburu Salt Lake, Southeastern, Nigeria. Heliyon, 7(7), e07512. https://doi.org/10.1016/j.heliyon.2021.e07512
Oziegbe, O., Oluduro, A. O., Oziegbe, E. J., Ahuekwe, E. F., & Olorunsola, S. J. 2021. Assessment of heavy metal bioremediation potential of bacterial isolates from landfill soils. Saudi Journal of Biological Sciences, 28(7), 3948–3956. https://doi.org/10.1016/j.sjbs.2021.03.072
Pambudiono, A., Suarsini, E., & Amin, M. 2018. The Potential of Indigenous Bacteria for Removing Cadmium from Industrial Wastewater in. THE JOURNAL OF TROPICAL LIFE SCIENCE, 8(1), 62–67. https://doi.org/10.11594/jtls.08.01.11
Pranaw, K., Pidlisnyuk, V., Trögl, J., & Malinská, H. 2020. Bioprospecting of a Novel Plant Growth-Promoting Bacterium Bacillus altitudinis KP-14 for Enhancing Miscanthus × giganteus Growth in Metals Contaminated Soil. Biology, 9(9). https://doi.org/10.3390/biology9090305
Priyadarshanee, M., & Das, S. 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104686. https://doi.org/10.1016/j.jece.2020.104686
Qi, X., Wang, H., Huang, C., Zhang, L., & Zhang, J. 2018. Analysis of bauxite residue components responsible for copper removal and related reaction products. Chemosphere, 207, 209–217. https://doi.org/10.1016/j.chemosphere.2018.05.041
Sahoo, S., & Goli, D. 2018. Bioremediation of Lead by a Halophilic Bacteria Bacillus pumilus Isolated from the Mangrove Regions of Karnataka. International Journal of Science and Research, 9(February), 1337–1343. https://doi.org/10.21275/ART20204172
Shu, L. J., & Yang, Y. L. 2017. Bacillus Classification Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry - Effects of Culture Conditions. Scientific Reports, 7(1), 6–15. https://doi.org/10.1038/s41598-017-15808-5
Starostin, K. V., Demidov, E. A., Bryanskaya, A. V., Efimov, V. M., Rozanov, A. S., & Peltek, S. E. 2015. Identification of Bacillus strains by MALDI TOF MS using geometric approach. Scientific Reports, 5, 1–9. https://doi.org/10.1038/srep16989
Sun, C., Chen, J., Tian, K., Peng, D., Liao, X., & Wu, X. 2019. Geochemical characteristics and toxic elements in alumina refining wastes and leachates from management facilities. International Journal of Environmental Research and Public Health, 16(7). https://doi.org/10.3390/ijerph16071297
Talukdar, D., Sharma, R., Jaglan, S., Vats, R., Kumar, R., Mahnashi, M. H., & Umar, A. 2020. Identification and characterization of cadmium resistant fungus isolated from contaminated site and its potential for bioremediation. Environmental Technology and Innovation, 17, 100604. https://doi.org/10.1016/j.eti.2020.100604
Wang, T., Wang, X., Tian, W., Yao, L., Li, Y., & Chen, Z. 2020. Screening of Heavy Metal-Immobilizing Bacteria and Its E ff ect on Reducing Cd 2 + and Pb 2 + Concentrations in Water Spinach (Ipomoea aquatic Forsk.). Int. J. Environ. Res. Public Health, 7, 1–16.
Wei, W., Wang, Q., Li, A., Yang, J., Ma, F., Pi, S., & Wu, D. 2016. Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior and mechanism assessment. Nature Publishing Group, July, 1–10. https://doi.org/10.1038/srep31575
Xu, X., Hao, R., Xu, H., & Lu, A. 2020. Removal mechanism of Pb (II) by Penicillium polonicum: immobilization, adsorption, and bioaccumulation. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-66025-6
Yani, A., Amin, M., Rohman, F., Suarsini, E., & Putra, W. E. 2020. Profiling indigenous lead-reducing bacteria from tempe lake, South Sulawesi, Indonesia as bioremediation agents. Biodiversitas, 21(10), 4778–4786. https://doi.org/10.13057/biodiv/d211043
Zhang, R., Zhang, Y., Zhang, T., Xu, M., Wang, H., Zhang, S., Zhang, T., Zhou, W., & Shi, G. 2022. Establishing a MALDI-TOF-TOF-MS method for rapid identification of three common Gram-positive bacteria (Bacillus cereus, Listeria monocytogenes, and Micrococcus luteus) associated with foodborne diseases. Food Science and Technology, 2061, 1–9.