Evaluation of bioprospecting potential of epiphytic Gracilaria edulis harvested from seaweed farm in Seriwe Bay, Lombok, Indonesia

##plugins.themes.bootstrap3.article.main##

EKA SUNARWIDHI PRASEDYA
FITRIANI FITRIANI
PUTU BELLA APRILLIA SARASWATI
NIRWANA HAQIQI
WANDA QORIASMADILLAH
HIKMATURROHMI HIKMATURROHMI
SITI ZAINIAH NURHIDAYATI
PUTU EKA PASMIDI ARIATI

Abstract

Abstract. Prasedya ES, Fitriani F, Saraswati PBA, Haqiqi N, Qoriasmadillah W, Hikmaturrohmi H, Nurhidayati SZ, Ariati PEP. 2023.  Evaluation of bioprospecting potential of epiphytic Gracilaria edulis harvested from seaweed farm in Seriwe Bay, Lombok, Indonesia. Biodiversitas 24: 5343-5351. The seaweed industry is strategically important in Indonesia, comprising over 40% of the nation's aquaculture annual production. Despite the industry's promising growth, various challenges and problems remain, including intense epiphyte infestation. Hence, investigating the economic value of these epiphytes could provide new opportunities for potential industrial applications. Epiphytic algae is commonly found growing on commercial seaweeds which causes decreased biomass and increased risk of crop failure. Information regarding these epiphytic algae remains limited. This study investigates the molecular identification of the abundant epiphytic macroalgae found in one of the largest seaweed farms in, Seriwe Bay, Lombok, Indonesia. In addition, the epiphytic bioactive activity is also evaluated for further industrial potential. Molecular identification with the mitochondrial marker COX1 identifies the epiphytic macroalgae as Gracilaria edulis (S.G.Gmel.) P.C.Silva. The Indonesian G. edulis is closely related to the G. edulis specimens from Malaysia (JQ026083.1), Philippines (KY995636.1 and KY995635.1), and Thailand (JQ026088.1). The outgroup used was the G. edulis specimen from India (KP099563.1) because it shows the most distinct relationship to the other specimens. Extracted agar of Seriwe G. edulis shows moderate yield (21%) and low gel strength (134 g/cm2). The phytochemical content analyses show that G. edulis agar has a TPC value of 3.65 ± 0.52 mg GAE/g and promising antioxidant activity (DPPH IC50 = 797.40 ± 1.50 µg/mL; ABTS IC50 = 558.40 ± 1.44 µg/mL). Further phytochemical profiling with GCMS shows various promising major constituents such as tetradecanoic acid, neophyte diene, pentadecanoic acid, and hexadecanoic acid. Therefore, the findings suggest that G. edulis displays potential applications in the functional food and cosmetic industry.

##plugins.themes.bootstrap3.article.details##

References
Azeem, M.N.A., Ahmed, O.M., Shaban, M., Elsayed, K.N.M., 2022. In vitro antioxidant, anticancer, anti-inflammatory, anti-diabetic and anti-Alzheimer potentials of innovative macroalgae bio-capped silver nanoparticles. Environ Sci Pollut Res Int 29, 59930–59947. https://doi.org/10.1007/s11356-022-20039-x
Barros, F.C.N., da Silva, D.C., Sombra, V.G., Maciel, J.S., Feitosa, J.P.A., Freitas, A.L.P., de Paula, R.C.M., 2013. Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh). Carbohydrate Polymers 92, 598–603. https://doi.org/10.1016/j.carbpol.2012.09.009
Becker, L.C., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Marks, J.G., Shank, R.C., Slaga, T.J., Snyder, P.W., Alan Andersen, F., 2010. Final report of the amended safety assessment of myristic acid and its salts and esters as used in cosmetics. Int J Toxicol 29, 162S–86S. https://doi.org/10.1177/1091581810374127
Belattmania, Z., Bhaby, S., Nadri, A., Khaya, K., Bentiss, F., Jama, C., Reani, A., Vasconcelos, V., Sabour, B., 2021. Gracilaria gracilis (Gracilariales, Rhodophyta) from Dakhla (Southern Moroccan Atlantic Coast) as Source of Agar: Content, Chemical Characteristics, and Gelling Properties. Mar Drugs 19, 672. https://doi.org/10.3390/md19120672
Caroca-Valencia, S., Rivas, J., Araya, M., Núñez, A., Piña, F., Toro-Mellado, F., Contreras-Porcia, L., 2023. Indoor and Outdoor Cultures of Gracilaria chilensis: Determination of Biomass Growth and Molecular Markers for Biomass Quality Evaluation. Plants 12, 1340. https://doi.org/10.3390/plants12061340
?ižinauskas, V., Elie, N., Brunelle, A., Briedis, V., 2017. Fatty acids penetration into human skin ex vivo: A TOF-SIMS analysis approach. Biointerphases 12, 011003. https://doi.org/10.1116/1.4977941
El Wahidi, M., El Amraoui, B., El Amraoui, M., Bamhaoud, T., 2015. Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic coast. Ann Pharm Fr 73, 190–196. https://doi.org/10.1016/j.pharma.2014.12.005
Florez, J.Z., Camus, C., Hengst, M.B., Buschmann, A.H., 2017. A Functional Perspective Analysis of Macroalgae and Epiphytic Bacterial Community Interaction. Frontiers in Microbiology 8.
Francavilla, M., Franchi, M., Monteleone, M., Caroppo, C., 2013. The Red Seaweed Gracilaria gracilis as a Multi Products Source. Mar Drugs 11, 3754–3776. https://doi.org/10.3390/md11103754
Freitas, M.V., Mouga, T., Correia, A.P., Afonso, C., Baptista, T., 2021. New Insights on the Sporulation, Germination, and Nutritional Profile of Gracilaria gracilis (Rhodophyta) Grown under Controlled Conditions. Journal of Marine Science and Engineering 9, 562. https://doi.org/10.3390/jmse9060562
Generali? Mekini?, I., Skroza, D., Šimat, V., Hamed, I., ?agalj, M., Popovi? Perkovi?, Z., 2019. Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules 9, 244. https://doi.org/10.3390/biom9060244
Ghannadi, A., Shabani, L., Yegdaneh, A., 2016. Cytotoxic, antioxidant and phytochemical analysis of Gracilaria species from Persian Gulf. Adv Biomed Res 5, 139. https://doi.org/10.4103/2277-9175.187373
Goutzourelas, N., Kevrekidis, D.P., Barda, S., Malea, P., Trachana, V., Savvidi, S., Kevrekidou, A., Assimopoulou, A.N., Goutas, A., Liu, M., Lin, X., Kollatos, N., Amoutzias, G.D., Stagos, D., 2023. Antioxidant Activity and Inhibition of Liver Cancer Cells’ Growth of Extracts from 14 Marine Macroalgae Species of the Mediterranean Sea. Foods 12, 1310. https://doi.org/10.3390/foods12061310
Gu, Y., Cheong, K.-L., Du, H., 2017. Modification and comparison of three Gracilaria spp. agarose with methylation for promotion of its gelling properties. Chem Cent J 11, 104. https://doi.org/10.1186/s13065-017-0334-9
Gunathilaka, T.L., Samarakoon, K.W., Ranasinghe, P., Peiris, L.D.C., 2019. In-Vitro Antioxidant, Hypoglycemic Activity, and Identification of Bioactive Compounds in Phenol-Rich Extract from the Marine Red Algae Gracilaria edulis (Gmelin) Silva. Molecules 24, 3708. https://doi.org/10.3390/molecules24203708
Kalimuthu S, Ramalingam JR (1996) India. In: FAO/NACA (ed) Regional study and workshop on the taxonomy, ecology and processing of economically important red seaweed. Bangkok: NACA Environment and Aquaculture Development Series No. 3, pp 73–86
Kambey, C.S.B., Campbell, I., Sondak, C.F.A., Nor, A.R.M., Lim, P.E., Cottier-Cook, E.J., 2020. An analysis of the current status and future of biosecurity frameworks for the Indonesian seaweed industry. J Appl Phycol 32, 2147–2160. https://doi.org/10.1007/s10811-019-02020-3
Kaur, M., Bhatia, S., Gupta, U., Decker, E., Tak, Y., Bali, M., Gupta, V.K., Dar, R.A., Bala, S., 2023. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. Phytochem Rev 1–31. https://doi.org/10.1007/s11101-022-09848-7
Kim, J.-S., Lee, J.-H., 2020. Correlation between Solid Content and Antioxidant Activities in Umbelliferae Salad Plants. Prev Nutr Food Sci 25, 84–92. https://doi.org/10.3746/pnf.2020.25.1.84
Li, H., Yu, X., Jin, Y., Zhang, W., Liu, Y., 2008. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresour Technol 99, 3301–3305. https://doi.org/10.1016/j.biortech.2007.07.002
Martins, G.R., Monteiro, A.F., do Amaral, F.R.L., da Silva, A.S., 2021. A validated Folin-Ciocalteu method for total phenolics quantification of condensed tannin-rich açaí (Euterpe oleracea Mart.) seeds extract. J Food Sci Technol 58, 4693–4702. https://doi.org/10.1007/s13197-020-04959-5
Meena, R., Prasad, K., Siddhanta, A.K., 2006. Studies on “sugar-reactivity” of agars extracted from some Indian agarophytes. Food Hydrocolloids 20, 1206–1215. https://doi.org/10.1016/j.foodhyd.2006.01.005
Muflihah, Y.M., Gollavelli, G., Ling, Y.-C., 2021. Correlation Study of Antioxidant Activity with Phenolic and Flavonoid Compounds in 12 Indonesian Indigenous Herbs. Antioxidants (Basel) 10, 1530. https://doi.org/10.3390/antiox10101530
Nakada, M., Hatayama, Y., Ishikawa, A., Ajisaka, T., Sawayama, S., Imai, I., 2018. Seasonal distribution of Gambierdiscus spp. in Wakasa Bay, the Sea of Japan, and antagonistic relationships with epiphytic pennate diatoms. Harmful Algae 76, 58–65. https://doi.org/10.1016/j.hal.2018.05.002
Othman, M.N.A., Hassan, R., Harith, M.N., Sah, A.S.R.M., 2018. Morphological Characteristics and Habitats of Red Seaweed Gracilaria spp. (Gracilariaceae, Rhodophyta) in Santubong and Asajaya, Sarawak, Malaysia. Trop Life Sci Res 29, 87–101. https://doi.org/10.21315/tlsr2018.29.1.6
Prasedya, E.S., Frediansyah, A., Martyasari, N.W.R., Ilhami, B.K., Abidin, A.S., Padmi, H., Fahrurrozi, Juanssilfero, A.B., Widyastuti, S., Sunarwidhi, A.L., 2021. Effect of particle size on phytochemical composition and antioxidant properties of Sargassum cristaefolium ethanol extract. Sci Rep 11, 17876. https://doi.org/10.1038/s41598-021-95769-y
Ramakrishnan, G.S., Fathima, A.A., Ramya, M., 2017. A rapid and efficient DNA extraction method suitable for marine macroalgae. 3 Biotech 7, 364. https://doi.org/10.1007/s13205-017-0992-2
Reboleira, J., Ganhão, R., Mendes, S., Adão, P., Andrade, M., Vilarinho, F., Sanches-Silva, A., Sousa, D., Mateus, A., Bernardino, S., 2020. Optimization of Extraction Conditions for Gracilaria gracilis Extracts and Their Antioxidative Stability as Part of Microfiber Food Coating Additives. Molecules 25, 4060. https://doi.org/10.3390/molecules25184060
Rimmer, M.A., Larson, S., Lapong, I., Purnomo, A.H., Pong-Masak, P.R., Swanepoel, L., Paul, N.A., 2021. Seaweed Aquaculture in Indonesia Contributes to Social and Economic Aspects of Livelihoods and Community Wellbeing. Sustainability 13, 10946. https://doi.org/10.3390/su131910946
Singh, Amit Kumar, Kumar, P., Rajput, V.D., Mishra, S.K., Tiwari, K.N., Singh, Anand Kumar, Minkina, T., Pandey, A.K., 2023. Phytochemicals, Antioxidant, Anti-inflammatory Studies, and Identification of Bioactive Compounds Using GC-MS of Ethanolic Novel Polyherbal Extract. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04363-7
Song, Y.-Z., Wang, J.-Q., Gao, Y.-X., 2017. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body. Environ Sci Pollut Res Int 24, 9548–9555. https://doi.org/10.1007/s11356-017-8604-6
Stiger-Pouvreau, V., Zubia, M., 2020. Macroalgal diversity for sustainable biotechnological development in French tropical overseas territories. Botanica Marina 63, 17–41. https://doi.org/10.1515/bot-2019-0032
Sugumaran, R., Padam, B.S., Yong, W.T.L., Saallah, S., Ahmed, K., Yusof, N.A., 2022. A Retrospective Review of Global Commercial Seaweed Production-Current Challenges, Biosecurity and Mitigation Measures and Prospects. Int J Environ Res Public Health 19, 7087. https://doi.org/10.3390/ijerph19127087
Sunarwidhi, A.L., Hernawan, A., Frediansyah, A., Widyastuti, S., Martyasari, N.W.R., Abidin, A.S., Padmi, H., Handayani, E., Utami, N.W.P., Maulana, F.A., Ichfa, M.S.M., Prasedya, E.S., 2022. Multivariate Analysis Revealed Ultrasonic-Assisted Extraction Improves Anti-Melanoma Activity of Non-Flavonoid Compounds in Indonesian Brown Algae Ethanol Extract. Molecules 27, 7509. https://doi.org/10.3390/molecules27217509
Tan, P.-L., Poong, S.-W., Tan, J., Brakel, J., Gachon, C., Brodie, J., Sade, A., Lim, P.-E., 2022. Assessment of genetic diversity within eucheumatoid cultivars in east Sabah, Malaysia. J Appl Phycol 34, 709–717. https://doi.org/10.1007/s10811-021-02608-8
Toh, S.C., Lihan, S., Bunya, S.R., Leong, S.S., 2023. In vitro antimicrobial efficacy of Cassia alata (Linn.) leaves, stem, and root extracts against cellulitis causative agent Staphylococcus aureus. BMC Complement Med Ther 23, 85. https://doi.org/10.1186/s12906-023-03914-z
Venn-Watson, S.K., Butterworth, C.N., 2022. Broader and safer clinically-relevant activities of pentadecanoic acid compared to omega-3: Evaluation of an emerging essential fatty acid across twelve primary human cell-based disease systems. PLoS One 17, e0268778. https://doi.org/10.1371/journal.pone.0268778
Vuai, S.A.H., 2022. Characterization of agar extracted from Gracilaria species collected along Tanzanian coast. Heliyon 8, e09002. https://doi.org/10.1016/j.heliyon.2022.e09002
Wang, L., Shen, Z., Mu, H., Lin, Y., Zhang, J., Jiang, X., 2017. Impact of alkali pretreatment on yield, physico-chemical and gelling properties of high quality agar from Gracilaria tenuistipitata. Food Hydrocolloids 70, 356–362. https://doi.org/10.1016/j.foodhyd.2016.11.042
Xiao, Q., Yin, X., An, D., Chen, J., Chen, F., Zhang, Y., Weng, H., Xiao, A., 2023. Development of a novel agar extraction method using calcium hydroxide and carbon dioxide. Algal Research 69, 102933. https://doi.org/10.1016/j.algal.2022.102933

Most read articles by the same author(s)