Designing antimicrobial active packaging films based on chitosan plus fungus comb ethyl acetate extract from Indo-Malayan termite mounds

##plugins.themes.bootstrap3.article.main##

LUCIA DHIANTIKA WITASARI
DEBORAH PATRICIA LIZAR
OLIVIA MARTHA FLORENCIA
ARIF RAMADHAN
NUR AFNI OKTRI FIANA
SUPRIYADI SUPRIYADI
SYLVIA UTAMI TUNJUNG PRATIWI
DODI NANDIKA
LINA KARLINASARI
ARINANA ARINANA
IRMANIDA BATUBARA
DJOKO SANTOSO
I KETUT SUDIANA
DECSA MEDIKA HERTANTO
YANTI RACHMAYANTI
DIKHI FIRMANSYAH

Abstract

Abstract. Witasari LD, Lizar DP, Florencia OM, Ramadhan A, Fiana NAO, Supriyadi S, Pratiwi SUT, Nandika D, Karlinasari L, Arinana A, Batubara I, Santoso D, Rachmayanti Y, Firmansyah D, Sudiana IK, Hertanto DM, Rachmayanti Y, Firmansyah D. 2023. Designing antimicrobial active packaging films based on chitosan plus fungus comb ethyl acetate extract from Indo-Malayan termite mounds. Biodiversitas 24: 5947-5955. Antimicrobial active packaging systems incorporate antimicrobial compounds into polymer films, i.e., chitosan, thus suppress spoilage microorganism growth in foods. Chitosan films itself cannot prevent microbial growth, thus other antimicrobial agent must be added. Fungus comb extract from Indo-Malayan termite (Macrotermes gilvus (Hagen, 1858)) mounds is a potential active organic antimicrobial compound, which can be incorporated into chitosan films. The purpose of this study was to develop and characterize active packaging films based on chitosan plus an antimicrobial fungus comb ethyl acetate extract. Films contained 1% chitosan and fungus comb ethyl acetate extract (0.5, 1, 2, and 5% w/v). Notably, films containing 2 and 5% extracts inhibited Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), and Pseudomonas aeruginosa (ATCC 27853), but not fungi. Films plus 2% extract showed a thickness, tensile strength, and strain of 0.13 mm, 2.15 MPa, and 32.55%, respectively. Films had a moisture content of 0.26%, water solubility of 2.68%, swelling property of 2.37%, and water vapor permeability (WPV) of 3.31×10?10 g.m?1s?1.Pa?1. They displayed smooth morphology but no new functional groups. Thus, chitosan plus 2% of fungus comb ethyl acetate extract can be used in antimicrobial active packaging films for food application. It could be applied as a green alternative to prolong the shelf-life of food products.

##plugins.themes.bootstrap3.article.details##

References
Anggraeni, N. D. (2008, October). SEM (Scanning Electron Microscope) and micro photo analysis of corn stalk fiber composite materials with polypropylene plastic matrix. National Seminar about Mechanical Engineering and Applications in Industry at Kampus Itenas, Bandung.
Arinana, Aldina, R., Nandika, D., Rauf, A., Harahap, I. S., Sumertajaya, I. M., & Bahtiar, E. T. (2016). Termite diversity in urban landscape, South Jakarta, Indonesia. Insects, 7(2), 1-18. https://doi.org/10.3390/insects7020020.
Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2018). Comparative study on antimicrobial activity and biocompatibility of N-selective chitosan derivatives. Reactive and Functional Polymers, 124, 149–155. https://doi.org/10.1016/j.reactfunctpolym.2018.01.016.
Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. of Pharmaceutical Analysis, 6, 71-79. http://dx.doi.org/10.1016/j.jpha.2015.11.005.
Bigi, F., Haghighi, H., Siesler, H. W., Licciardello, F., & Pulvirenti, A. (2021). Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocolloids, 120, 1-11. https://doi.org/10.1016/j.foodhyd.2021.106979.
Butler, B. L., Vergano, P. J., Testin, R. F., Bunn, J. M., & Wiles, J. L. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5), 953-956.
Caesario, J., Hertanto, D.M., Susanto, H., Sudiana K., Nandika, D., Karlinasari, L., Arinana, A., Batubara, I., Witasari L.D., Rachmayanti, Y., Firmasyah, D., Santoso, D. (2023). Hematological Profile of Mice After Ethyl Acetate Extract of Fungus Comb of Indo-Malayan Termite (Macrotermes gilvus Hagen) Mound Supplementation in Regulating Lipopolysaccharide-induced Inflammatory Response. Mal J Med Health Sci 19(3): 57-63.
Clinical and Laboratory Standards Institute. (2015). Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard (12th ed.). Document M02-A12. Wayne, PA.
Contessa, C. R., da Rosa, G. S., Moraes, C. C. (2021). New active packaging based on biopolymeric mixture added with bacteriocin as active compound. Int. J. Mol. Sci, 22, 10628. https://doi.org/10.3390/ijms221910628.
De Carli, C., Aylanc, V., Mouffok, K. M., Santamaria-Echart, A., Barreiro, F., Tomás, A., Pereira, C., Rodrigues, P., Vilas-Boas, M., & Falcão, S. I. (2022). Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. International Journal of Biological Macromolecules, 213, 486–497. https://doi.org/10.1016/j.ijbiomac.2022.05.155.
Flórez, M., Guerra-Rodríguez, E., Cazón, P., Vázquez M., (2022). Chitosan for food packaging: Recent advances in active and intelligent films, Food Hydrocolloids, 124, 107328, https://doi.org/10.1016/j.foodhyd.2021.107328.
Gan, L., Jiang, G., Yang, Y., Zheng, B., Zhang, S., Li, X., Tian, Y., & Peng, B. (2022). Development and characterization of levan/pullulan/chitosan edible films enriched with ?-polylysine for active food packaging. Food Chemistry, 388, 132989. https://doi.org/10.1016/j.foodchem.2022.132989
Hao, Y., Zhang, M., Wang, L., Tao, N., Li, L., Zhu, W., Xu, C., Deng, S., & Wang, Y. (2022). Mechanism of antimicrobials immobilized on packaging film inhabiting foodborne pathogens. Food Science and Technology, 169, 114037. https://doi.org/10.1016/j.lwt.2022.114037.
Nandika, D., Karlinasari, L., Arinana, A., Batubara, I., Sitanggang, P. S., Santoso, D., Witasari, L. D., Rachmayanti, Y., Firmansyah, D., Sudiana, I. K., et al. (2021). Chemical components of fungus comb from Indo-Malayan termite Macrotermes gilvus Hagen mound and its bioactivity against wood-staining fungi. Forests, 12, 1591. https://doi.org/10.3390/f12111591.
Nandika, D., Arinana, A., Karlinasari, L., Batubara, I., Santoso, D., Witasari, L.D., Rachmayanti, Y., Firmansyah, D., Sudiana, I.K., Hertanto, D.M., et al. (2023). Efficacy of Fungus Comb Extracts Isolated from Indo-Malayan Termite Mounds in Controlling Wood-Decaying Fungi. Forests, 14, 1115. https://doi.org/10.3390/f14061115
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451.
Ozdemir M., Floros J.D. (2004). Active Food Packaging Technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185-193, https://doi.org/10.1080/10408690490441578.
Pagella, C., Spigno, G., & Marco, D. F. D. (2002). Characterization of starch based edible coatings. Food and Bioproducts Processing, 80(3), 193–198.
Pinto, E. P., Tavares, W. D. S., Matos, R. S., Ferreira, A. M., Menezes, R. P., da Costa, M. E. H. M., de Souza, T. M., Ferreira, I. M., de Sousa, F. F. O., & Zamora, R. R. M. (2018). Influence of low and high glycerol concentrations on wettability and flexibility of chitosan biofilms. Quimica Nova, 41(10), 1109–1116. https://doi.org/10.21577/0100-4042.20170287.
Rachtanapun, P., Klunklin, W., Jantrawut, P., Jantanasakulwong, K., Phimolsiripol, Y., Seesuriyachan, P., Leksawasdi, N., Chaiyaso, T., Ruksiriwanich, W., Phongthai, S., Sommano, S. R., Punyodom, W., Reungsang, A., & Ngo, T. M. P. (2021). Characterization of chitosan film incorporated with curcumin extract. Polymers, 13(6), 1-15. https://doi.org/10.3390/polym13060963.
Rachmayanti, Y., Firmansyah, D., Umma, R.R., Hertanto, D.M., Sudiana, I.K., Santoso, D., Nandika, D., Karlinasari, L., Arinana, A., Batubara, I., Witasari, L.D.. (2022). Antioxidant Activity of Fungus Comb Extracts Isolated from Indo-Malayan Termite Macrotermes gilvus Hagen (Isoptera: Termitidae). Indonesian Journal of Chemistry, 22(6). https://doi.org/10.22146/ijc.77227
Remya, S., Mohan, C. O., Bindu, J., Sivaraman, G. K., Venkateshwarlu, G., & Ravishankar, C. N. (2016). Effect of chitosan based active packaging film on the keeping quality of child stored barracuda fish. J Food Sci Technol, 53(1), 685-693. https://doi.org/10.1007/s13197-015-2018-6.
Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., Abid, M., Hashim, M. M., & Zeng, X. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547–555. https://doi.org/10.1016/j.ijbiomac.2018.03.126.
Sogut, E., & Seydim, A. C. (2018). The effects of Chitosan and grape seed extract based edible films on the T quality of vacuum packaged chicken breast fillets. Food Packaging and Shelf Life, 18, 13–20. https://doi.org/10.1016/j.fpsl.2018.07.006.
Song, X., Wang, L., Liu, L., Li, J., & Wu, X. (2022). Impact of tea tree essential oil and citric acid/choline chloride on physical, structural and antibacterial properties of chitosan-based films. Food Control, 141. https://doi.org/10.1016/j.foodcont.2022.109186
Tien, C.L., Vachon, C., Mateescu, M.A. and Lacroix. 2006. Milk protein coatings prevent oxidative browning of apples and potatoes. Journal of Food Science, 66(4), 512-516. https://doi.org/10.1111/j.1365-2621.2001.tb04594.x.
Wai, C. K., Bond, T. Y., Lin, N. K., Phing, P. L. (2019). Antibacterial properties of chitosan edible films incorporated with musk lime extracts for the preservation of squids. Malaysian Journal of Analytical Sciences, 23(6), 914-925. https://doi.org/10.17576/mjas-2019-2306-01.
Witasari, L.D., Wahyu, K.W., Anugrahani, B.J., Kurniawan, D.C., Haryanto, A., Nandika, D., Karlinasari, L., Arinana, A., Batubara, I., Santoso, D., Rachmayanti, Y., Firmansyah, D., Sudiana, I.K., & Hertanto, D.M. (2022). Antimicrobial activities of fungus comb extracts isolated from Indomalayan termite (Macrotermes gilvus Hagen) mound. AMB Expr, 12, 14. https://doi.org/10.1186/s13568-022-01359-0.
Wu, J., Sun, X., Guo, X., Ge, S., & Zhang, Q. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oils. Aquaculture and Fisheries, 2(4), 185-192. https://doi.org/10.1016/j.lwt.2022.114037.
Zhang, L., Chen, D., Yu, D., Regenstein, J. M., Jiang, Q., Dong, J., Chen, W., & Xia, W. (2022). Modulating physicochemical, antimicrobial and release properties of chitosan/zein bilayer films with curcumin/nisin-loaded pectin nanoparticles. Food Hydrocolloids, 133. https://doi.org/10.1016/j.foodhyd.2022.107955.

Most read articles by the same author(s)

1 2 3 4 > >>