Morphological characteristics and variability of traditional starch forming coix (Coix lacryma-jobi var. ma-yuen) populations from Mindanao Island, Philippines

##plugins.themes.bootstrap3.article.main##

SANCHO G. BON
GERLIE P. ANTESCO
ELMER E. ENICOLA

Abstract

Abstract. Bon SG, Antesco GP, Enicola EE. 2023. Morphological characteristics and variability of traditional starch forming coix (Coix lacryma-jobi var. ma-yuen populations from Mindanao Island, Philippines. Biodiversitas 24: 4382-4391. Adlay (Coix lacryma-jobi var. ma-yuen (Rom.Caill.) Stapf) is an underutilized crop in the Philippines with high potential. Characterization and elucidation of the available variability among the local adlay populations are essential information for its improvement and better utilization. The study aimed to characterize the qualitative morphological traits of 34 traditional adlay populations from Mindanao Provinces and assess diversity by the Shannon Index and similarity by multivariate clustering. Results showed that all populations shared the same morphotypes in five descriptors but were variable for the rest. Six populations showed intense leaf anthocyanin coloration, and 23 expressed upright growth habits. Three types of leaf blade colors were observed, while the intensity of anthocyanin coloration of culms was expressed in four types. Most populations had semi-pubescent or highly pubescent leaves, generally intermediate leaf orientation and non-glaucous leaves. Immature grains were generally light green but expressed four color types at maturity, mostly circular with furrows on the surface. Diversity Indices (H') ranged from low to high. Leaf blade pubescence, anthocyanin coloration of culm, and mature grain color had high H' values. Cluster analysis showed that the variability was narrow, where overall clustering achieved 0.50 similarity. At 0.65 similarity, three groups can be derived with three populations as outliers. Clustering can be attributed to the differences in seedling color, anthocyanin coloration, plant growth habit, immature grain color, mature grain color, and shape. The study established the morphological description of the qualitative traits of traditional Philippine adlay and assessed diversity to be generally intermediate, where populations can be clustered into subgroups according to the degree of morphotype similarities. Clustering, however, was not related to provenances. It is recommended to conduct further geographic germplasm sampling, marker-based characterization, and agronomic evaluation to dissect further the genetic diversity and crop potential of the local adlay populations.

##plugins.themes.bootstrap3.article.details##

References
Almarri NB, Alghamdi SS, Elshal MH, Afzal M. 2023. Estimating genetic diversity among durum wheat (Triticum durum desf.) landraces using morphological and SRAP markers. J Saudi Soc Agric Sci 22: 273-282. DOI: 10.1016/j.jssas.2023.01.002.
Arora RK. 1977. Job's-Tears (Coix lacryma-jobi): A minor food and fodder crop of Northeastern India. Econ Bot 31 (3): 358-366. DOI: 10.1007/BF02866887.
BDP (Business Diary Philippines). 2022. Adlai: Champion crop of the Subanen Tribe. https://businessdiary.com.ph/6650/adlai-champion-crop-Subanen-tribe/
BM (Business Mirror). 2022. Adlai production in the Philippines: Is it a viable alternative for rice in the Philippines? June 21, 2022 Issue. https://businessmirror.com.ph/2022/06/21/adlai-grain-rice-alternatives-philippines/
Chaniago N, Suliansyah I, Rozen N. 2022. Morphological characteristics of local rice in Deli Serdang District, North Sumatra, Indonesia. Biodiversitas 23: 883-893. DOI: 10.13057/biodiv/d230229.
Cong DV, Anh DT, Huong THH, Nhung NT, Ha TTT, Khanh TD, Toan VD. 2023. Genetic diversity of Job's tear (Coix lacryma-jobi L.) germplasms based on the morphological traits and SSR markers. Eur Chem Bull 12 (6): 42-52. DOI: 10.48047/ecb/2023.12.6.04.
Corke H, Huang Y, Li JS. 2016. Coix. In: Wrigley C, Corke H, Seetharaman K, Faubion J (eds.). Encyclopedia of Food Grains. Academic Press, Oxford. DOI: 10.1016/b978-0-12-394437-5.09998-8.
Dwipa I, Martinsyah RH, PAN Pamuji, G Ardana, N Ramadhan. 2022. Exploration and characterization of Hanjeli Nutfah plasma (Coix lacryma-jobi L) in West Sumatra Province. Juatika 4: 75-86. DOI: 10.36378/juatika.v4i1.1667.
Feng L, Zhao YH, Zhang ZQ, Zhang SA, Zhang HX, Yu ML, Ma YW. 2020. The edible and medicinal value of Coix lacryma-jobi and key cultivation techniques for high and stable yield. Nat Resour 11: 569-575. DOI: 10.4236/nr.2020.1112034.
Fu YH, Yang C, Meng Q, Lui F, Shen G, Zhou M, Ao M. 2019. Genetic diversity and structure of Coix lacryma-jobi L. from its world secondary diversity center, Southwest China. Intl J Genom 2019: 9815697. DOI: 10.1155/2019/9815697.
Galdon-Armero J, Fullana-Pericas M, Mulet PA, Conesa MA, Martin C, Galmes J. 2018. The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato). Plant J 96: 607-619. DOI: 10.1111/tpj.14055.
Govindaraj M, Vetriventhan M, Srinivasan M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet Res Intl 2015: 431-487. DOI: 10.1155/2015/431487.
Hen-Avivi S, Savin O, Racovita RC, Lee WS, Adamski NM, Malitsky S, et al. 2016. A metabolic gene cluster in the wheat W1 and the barley cer-cqu loci determines b-Diketone biosynthesis and glaucousness. Plant Cell 28: 1440-1460. DOI: 10.1105/tpc.16.00197.
Hu B, Wan Y, Li X, Zhang F, Yan W, Xie J. 2013. Phenotypic characterization and genetic analysis of rice with pubescent leaves and glabrous hulls (PLgh). Crop Sci 53: 1878-1886. DOI: 10.2135/cropsci2012.09.0522.
IBPGR (International Board for Plant Genetic Resources). 1991. Descriptors for Maize. International Maize and Wheat Improvement Center, Mexico City/International Board for Plant Genetic Resources. Rome, Italy
Kumar R, Shukla UN, Kumawat N. 2014. Job's Tears: An unexploited multipurpose shrub in North Eastern Hilly Region of India. Popular Kheti 2 (4): 118-122.
Kuo CC, Chen HH, Huang Chang W. 2012. Adlay (?? yì y?; "soft-shelled job's tears"; the seeds of Coix lacryma-jobi L. var. ma-yuen Stapf.) is a potential cancer chemopreventive agent toward multistage carcinogenesis processes. J Tradit Complement Med 2 (4): 267-275. DOI: 10.1016/S2225-4110(16)30112-2.
Landi M, Tattini M, Gould KS. 2015. Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119: 4-17. DOI: 10.1016/j.envexpbot.2015.05.012.
Li XS, Zhou X, Li ZF, Li Q, Yang CL, Zhou MQ, Fu YH. 2019. Genetic diversity of Coix lacryma-jobi L. germplasm resources from Guizhou and its adjacent provinces based on AFLP markers. J South Agric 50: 1931-1936. DOI: 10.3969/j.issn.2095-1191.2019.09.06. [Chinese]
Liang J, He J. 2018. Protective role of anthocyanins in plants under low nitrogen stress. Biochem Biophys Res Commun 498: 946-953. DOI: 10.1016/j.bbrc.2018.03.087.
Liu H, Shi J, Cai Z, Huang Y, Lu M, Du H, Gao Q, Zuo Y, Dong Z, Huang W, Qin R, Liang C, Lai J, Jin W. 2019. Evolution and domestication footprints uncovered from the genomes of Coix. Mol Plant 13: 295-308. DOI: 10.1016/j.molp.2019.11.009.
Ma KH, Kim KH, Dixit A, Chung IM, Gwag JG, Kim TS, Park YJ. 2010. Assessment of genetic diversity and relationships among Coix lacryma-jobi accessions using microsatellite markers. Biol Plant 54: 272-278. DOI: 10.1007/s10535-010-0047-6.
Maksylewicz A, Baranski R. 2013. Intra-population genetic diversity of cultivated carrot (Daucus carota L.) assessed by analysis of microsatellite markers. Acta Biochim Pol 60: 753-760. DOI: 10.18388/abp.2013_2053.
Mekdad AAA, Rady MM. 2016. Productivity response to plant density in five sorghum bicolor varieties in dry environments. Ann Agric Crop Sci 1: 1-7.
Mello LV, Silva WJ, Medina-Filho HP, Balvve R. 1995. Breeding systems in Coix lacryma-jobi populations. Euphytica 81: 217-22. DOI: 10.1007/BF00025436.
Merrill ED. 1912. A Flora of Manila. Publication No. 5. Bureau of Science - Department of the Interior, Manila. DOI: 10.5962/bhl.title.54449.
Mezghani N, Amor JB, Spooner DM, Simon WP, Mezghani N, Boubaker H, Namji AM, Rouz S, Hannachi C, Neffati M, Tarchoun N. 2017. Multivariate analysis of morphological diversity among closely related Daucus species and subspecies in Tunisia. Genet Resour Crop Evol 64: 2145-2159. DOI: 10.1007/s10722-017-0505-5.
Onda Y, Mochida K. 2016. Exploring genetic diversity in plants using high-throughput sequencing techniques. Curr Genom 17: 358-367. DOI: 10.2174/1389202917666160331202742.
Phukan A, Barua PK, Sarma RN, Borah N. 2020. Inter and intra population diversity analysis in Toria (Brassica rapa L.) using SSR marker. Indian J Genet 80: 107-111. DOI: 10.31742/IJGPB.80.1.14.
RadyoMan–Manila. 2020. Adlay seed production seen to boost income of farmers in region 10. https://rmn.ph/adlay-seed-production-seen-to-boost-income-of-farmers-in-region-10/
Rohlf FJ. 2008. NTSYSpc: Numerical Taxonomy System, ver. 2.21q. Exeter Publishing Ltd, New York.
Shen G, Girdthai T, Lui ZY, Fu YH, Meng QY, Liu FZ. 2019. Principal component and morphological diversity analysis of Job's-tears (Coix lacryma-jobi L.). Chil J Agric Res 79 (1): 131-143. DOI: 10.4067/S0718-58392019000100131.
Singh M, Chouhan P, Chaudhari P. 2021. Agro-morphological characterization of indigenous germplasm accessions of rice (Oryza sativa L.). J Pharmacogn Phytochem 10: 1378-1385.
Slow Food. 2019. Mindanao adlay: Ark of Taste. Slow Food Foundation for Biodiv. www. fondazioneslowfood.com
Sun M, Zhang C, Zhang XQ, Fan Y, Fu K, Wu W, Bai S, Zhang J, Peng Y, Huang L, Yan Y, Ma X. 2017. AFLP assessment of genetic variability and relationships in an Asian wild germplasm collection of Dactylis glomerata L. C R Biol 340 (3): 145-155. DOI: 10.1016/j.crvi.2016.12.003.
Tafere C, Irie K. 2019. Growth response of culm habit of near-isogenic rice (Oryza sativa L.) lines to different planting densities and nitrogen regimes. Intl J Res Rev 6 (12): 172-184.
UPOV (Union Internationale Pour la Protection des Obtentions Végétales). 2012. Guidelines for the Conduct of Test for Distinctness, Uniformity and Stability for Adlay (Coix lacryma-jobi L. var. ma-yuen (Rom. Caill. Stapf.). 28p. UPOV, Geneva.
Weng WF, Peng Y, Pan X, Yan J, Li XD, Liao ZY, Cheng JP, Gao AJ, Yao X, Ruan JJ, Zhou ML. 2022. Adlay, an ancient functional plant with nutritional quality, improves human health. Front Nutrit 2022: 1-15. DOI: 10.3389/fnut.2022.1019375.
Wester PJ. 1922. Adlay – A new grain plant from the orient: a relative of Indian corn found in Eastern Asia in a great number of varietal forms – offering an untouched field of work for the plant breeder. J Hered 13: 221-227. DOI: 10.1093/oxfordjournals.jhered.a102209.
Xi XJ, Zhu YG, Tong YP, Yang XL, Tang NN, Ma SM. 2016. Assessment of the genetic diversity of different Job's tears (Coix lacryma-jobi L.) accessions and the active composition and anticancer effect of its seed oil. PLoS ONE 11 (4): e0153269. DOI: 10.1371/journal. pone.0153269.
Yu F, Zhang J, Li YZ, Zhao ZY, Liu CX. 2017. Research and application of adlay in medicinal field. Chin Herb Med 9: 126-133. DOI: 10.1016/S1674-6384(17)60086-8.
Zeng Y, Yang J, Chen J, Pu X, Li X, Yang X, Yang L, Ding Y, Nong M, Zhang S, He J. 2022. Actional mechanisms of active ingredients in functional food Adlay for human health. Molecules 27: 4808. DOI: 10.3390/ molecules27154808.
Zhao S, Blum JA, Ma F, Wang Y, Wysocka EW, Ma F, Li P. 2022. Anthocyanin accumulation provides protection against high light stress while reducing photosynthesis in apple leaves. Intl J Mol Sci 23 (20): 12616. DOI: 10.3390/ijms232012616.