Differences in the vegetation dynamic patterns of three tropical secondary forests in South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

PUTU SUPADMA PUTRA
https://orcid.org/0000-0003-1240-358X
TOSHIHIRO YAMADA
https://orcid.org/0000-0001-9307-6255
AMRAN ACHMAD
https://orcid.org/0000-0001-5336-5028
NASRI
https://orcid.org/0000-0002-9857-9588
ANDI SIADY HAMZAH
https://orcid.org/0000-0001-7652-1492
PUTU OKA NGAKAN
https://orcid.org/0000-0002-1383-2661

Abstract

Abstract. Putra PS, Yamada T, Achmad A, Nasri N, Hamzah AS, Ngakan PO. 2023. Differences in the vegetation dynamic patterns of three tropical secondary forests in South Sulawesi, Indonesia. Biodiversitas 24: 5065-5073. Degraded forests experience dynamics that drive them towards stable ecological conditions as a result of the succession process. Understanding the dynamics of forests through succession is a requirement for secondary forest management activities. The purpose of this research was to uncover the dynamics of population, species composition, and dominance in three secondary tropical forest communities: (i) Karst forest, (ii) Lowland forest, and (iii) Pinus merkusii plantation forest. Permanent plots with areas tailored to the richness of each forest community were constructed, and vegetation studies were conducted annually from 2019 to 2022. The results revealed that the ten most dominant species in each plot shared only one species. The rest were exclusive to a single community. During the four years of research, 25 out of a total of 90 species (Karst), 27 out of a total of 68 species (Lowland), and 12 out of a total of 43 species (Pine) experienced dynamics in the form of an increase or decrease in population. Tree density decreased in the Karst plot and fluctuated slightly in the Lowland and Pine forest plots. Meanwhile, the basal area cover continued to increase during the 4 years of observation. Comparing age and pre-succession land use history, soil type and restoration history appear dominant in determining the forest dynamics.

##plugins.themes.bootstrap3.article.details##

References
Adyn MF, Sibarani MC, Utoyo L, Surya RA, Sedayu A. 2022. Role of siamang (Symphalangus syndactylus) as seed dispersal agent in a Sumatran lowland tropical forest. Biodiversitas 23(4): 2101-2110. DOI: 10.13057/biodiv/d230445.
Anju MV, Warrier RR, Kunhikannan C. 2022. Significance of soil seed bank in forest vegetation—A review. Seeds 1(3): 181–197. DOI: 10.3390/seeds1030016.
Asner GP, Keller M, Pereira Jr R, Zweede JC, Silva JN. 2004. Canopy damage and recovery after selective logging in Amazonia: field and satellite studies. Ecol. Appl. 14(sp4): 280-298. DOI: 10.1890/01-6019.
Barlow J, Lennox GD, Ferreira J et al. 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535(7610): 144-147. DOI: 10.1038/nature18326.
Bhatt RP. 2022. Impact on forest and vegetation due to human interventions. in vegetation dynamics, changing ecosystems and human responsibility. IntechOpen. DOI: 10.5772/intechopen.105707.
Cardelús CL, Mekonnen AB, Jensen KH et al. 2020. Edge effects and human disturbance influence soil physical and chemical properties in Sacred Church forests in Ethiopia. Plant and Soil 453: 329-342. DOI: 10.1007/s11104-020-04595-0.
Chen Y, Kuang J, Wang P, Shu W, Barberan A. 2020. Associations between human impacts and forest soil microbial communities. Elementa: Science of the Anthropocene 8(1): 005. DOI: 10.1525/elementa.00.
Chen J-J, Sun Y, Kopp K, Oki L, Jones SB, Hipps L. 2022. Effects of water availability on leaf trichome density and plant growth and development of Shepherdia xutahensis. Front. Plant Sci. 13: 855858. DOI: 10.3389/fpls.2022.855858.
Connell JH, Slatyer RO. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111(982): 1119-1144. https://www.jstor.org/stable/2460259.
Corlett RT, Hau BCH. 2000. Seed dispersal and forest restoration. In: Forest Restoration for Wildlife Conservation (Elliott, S., J. Kerby, D. Blakesley, K. Hardwick, K. Woods and V. Anusarnsunthorn. Eds.). International Tropical Timber Organization and The Forest Restoration Research, Chiang Mai University, Thailand. pp. 317-325.
De Lima RA, Oliveira AA, Pitta GR, de Gasper AL, Vibrans AC, Chave J, ter Steege H, Prado PI. 2020. The erosion of biodiversity and biomass in the Atlantic forest biodiversity hotspot. Nat. Commun. 11(1): 6347. DOI: 10.1038/s41467-020-20217-w.
Duarte E, Higuchi P, da Silva AC et al. 2021. Key factors affecting succession in upper montane forest areas of “Planalto Sul Catarinense” Region, Brazil. BOSQUE 42(3): 353-364. DOI: 10.4067/S0717-92002021000300353.
Earle CJ. 2023. The Gymnosperm Database. Pinus merkusii Junghuhn et de Vriese ex de Vriese 1845. available at: https://www.conifers.org/pi/Pinus_merkusii.php.
Feldmann E, Drößler L, Hauck M, Kucbel S, Pichler V, Leuschner C. 2018. Canopy gap dynamics and tree understory release in a virgin beech forest, Slovakian Carpathians. For. Ecol. Manag. 415-416: 38-46. DOI: 10.1016/j.foreco.2018.02.022.
Finch-Savage WE, Footitt S. 2017. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 68(4): 843-856. DOI: 10.1093/jxb/erw477.
Gunawan H, Yeny I, Karlina E et al. 2022. Integrating social forestry and biodiversity conservation in Indonesia. Forests 13(12): 2152. DOI: 10.3390/f13122152.
Hoi ND, Dung NT. 2021. Seasonal dynamics of tropical forest vegetation in Ngoc Linh nature reserve, Vietnam based on UAV data. For. Soc. 5(2): 376-389. DOI: 10.24259/fs.v5i2.13027.
Kusuma AF, Sadono R, Wardhana W. 2023. Ten years assessment of shifting cultivation on land cover and carbon storage in Timor Island, Indonesia. Floresta e Ambient. 29(4): e20220016. DOI: 10.1590/2179-8087-FLORAM-2022-0016.
Ministry of Environment and Forestry of the Republic of Indonesia. 2019. Ministry of Environment and Forestry statistic 2019. Data and information Center, Jakarta. Available at: https://www.menlhk.go.id/uploads/site/post/1615946550.pdf.
Mueller-Dombois D, Ellenberg H. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, New York. 531 p.
Muscolo A, Bagnato S, Sidari M, Mercurio R. 2014. A review of the roles of forest canopy gaps. J. For. Res. 25: 725-736. DOI: 10.1007/s11676-014-0521-7.
Nations JD. 2019. Tropical forests and human society. In Human Impact on the Environment: Ancient Roots, Current Challenges. Edited by Judith E. Jacobsen. (pp. 171-180). Routledge. Available at: https://www.taylorfrancis.com/chapters/edit/10.4324/9780429037757-10/tropical-forests-human-society-james-nations.
Oko PE, Odey DU. 2022. Impact of population growth on biodiversity loss in boki agro-ecological rainforests, cross river state, Nigeria. Glob. J. of Pure Appl. Sci. 28(1): 99-105. DOI: 10.4314/gjpas.v28i1.12.
Pérez-Hernández J, Gavilán RG. 2021. Impacts of land-use changes on vegetation and ecosystem functioning: Old-field secondary succession. Plants 10(5): 990. DOI: 10.3390/plants1005099.
Pyles MV, Magnago LFS, Maia VA et al. 2022. Human impacts as the main driver of tropical forest carbon. Sci. Adv. 8(24): eabl7968. DOI: 10.1126/sciadv.abl7968.
Rahajoe JS, Alhamd L, Walujo EB, Limin HS, Suneetha MS, Braimoh AK, Kohyama T. 2014. Impacts of agricultural land change on biodiversity and ecosystem services in Kahayan Watershed, Central Kalimantan. Vulnerability of land systems in Asia 195-214. DOI: 10.1002/9781118854945.ch13.
Rugani T, Diaci J, Hladnik D. 2013. Gap dynamics and structure of two old-growth beech forest remnants in Slovenia. PLoS One 8: e52641. DOI: 10.1371/journal.pone.0052641.
Sasaki N, Asner GP, Pan Y et al. 2016. Sustainable management of tropical forests can reduce carbon emissions and stabilize timber production. Front. Environ. Sci. 4: 50. DOI: 10.3389/fenvs.2016.00050.
Schmidt FH, Ferguson JH. 1951. Rainfall types based on wet and dry period ratios for Indonesia with western New Guinea. Verh. Djawatan Meteorologi dan Geofisika. Djakarta. https://agris.fao.org/agris-search/search.do?recordID=US201300720509. (Accessed 11 March 2020).
Sellan G, Thompson J, Majalap N, Brearley FQ. 2019. Soil characteristics influence species composition and forest structure differentially among tree size classes in a Bornean heath forest. Plant and Soil 438: 173-185. DOI: 10.1007/s11104-019-04000-5.
Shimamoto CY, Padial AA, da Rosa CM, Marques MCM. 2018. Restoration of ecosystem services in tropical forests: A global meta-analysis. PLoS One 13(12): e0208523. DOI: 10.1371/journal.pone.0208523.
Stanturf JA, Palik BJ, Williams MI, Dumroese RK, Madsen P. 2014. Forest restoration paradigms. J. Sustain. For. 33: S161-S194. DOI: 10.1080/10549811.2014.884004.
Tian L, Letcher SG, Ding Y, Zang R. 2022. A ten-year record reveals the importance of tree species’ habitat specialization in driving successional trajectories on Hainan island, China. For. Ecol. Manag. 507: 120027. DOI: 10.1016/j.foreco.2022.120027.
Thong P, Sahoo UK, Thangjam U, Pebam R. 2020. Pattern of forest recovery and carbon stock following shifting cultivation in Manipur, North-East India. PloS One 15(10): e0239906. DOI: 10.1371/journal.pone.0239906.
Xue R, Shen Y, Marschner P. 2016. Low soil water content during plant growth influences soil respiration and microbial biomass after plant removal and rewetting. J. Soil Sci. Plant Nutr. 16(4): 955-966. DOI: 10.4067/S0718-95162016005000068.
Yamamoto S-I. 2000. Forest gap dynamics and tree regeneration. J. For. Res. 5(4): 223-229. DOI: 10.1007/BF02767114.
Zhang X, Wang J, Gao Y, Wang L. 2021. Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years. Geography and Sustainability 2(1): 74-85. DOI: 10.1016/j.geosus.2021.02.001.
Zhu C, Zhu J, Wang GG, Zheng X, Lu D, Gao T. 2019. Dynamics of gaps and large openings in a secondary forest of Northeast China over 50 years. Ann. For. Sci. 76: 1-10. DOI: 10.1007/s13595-019-0844-9.