Genetic diversity and molecular analysis using RAPD markers of banana cultivars in the five regions of East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

SLAMETO

Abstract

Abstract. Slameto. 2023. Genetic diversity and molecular analysis using RAPD markers of banana cultivars in the five regions of East Java, Indonesia. Biodiversitas 24: 5035-5043. The study explored banana plants in East Java, Indonesia, specifically in the districts of Jember, Banyuwangi, Bondowoso, Situbondo, and Lumajang, using Random Amplified Polymorphic Deoxyribonucleic Acid (RAPD) markers. Thirty accessions of Musa ssp. were collected from these five districts, revealing a high level of genetic diversity. Primers OPA-04 and OPC-05 were suitable for assessing genetic variation in banana plants. It was found that the OPD-07 primer produced the fewest DNA bands (8 bands and 7 polymorphic bands), while the OPA-04 primer produced the maximum number of DNA bands (14 bands, with 9 polymorphic bands). The OPB-08 primer had the lowest polymorphism percentage (56%), and the OPC-05 primer had the greatest percentage (92%). With genetic similarity scores ranging from 0.04 (Bigih Tanjung Glugur and Lilin Banyuwangi) to 0.94 (Agung Banyuwangi and Let). The phylogenetic tree of 30 banana plants formed two primary clusters: cluster I and II, included 26 and 4 banana varieties respectively. In addition, molecular variance (AMOVA) resulted a significant proportion (93%) of genetic diversity within the population. Further studies using more precise genetic markers are still needed to determine the exact identity of the banana plant genome.

##plugins.themes.bootstrap3.article.details##

References
Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME. 1993. Optimizing parental selection for genetic linkage maps. Genome;36:181–186. doi: 10.1139/g93-024.
Bhat KV, Jarret RL, Rana RS. 1995. DNA profiling of banana and plantain cultivars using random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers. Electrophoresis 16(1):1736–1745
De Langhe E, Hr?ibova´ E, Carpentier S, Dolez?el J, Swennen R. 2010. Did backcrossing contribute to the origin of hybrid edible bananas? Annals of Botany 106, 849–857. DOI:10.1093/aob/mcq187
Denham, T.P., S.G. Haberle, C. Lentfer, R. Fullagar, J. Field, M. Therin, N. Porch & B. Winsborough. 2003. Origins of agriculture at Kuk Swamp in the Highlands of New Guinea. Science 301:189-193.
Espino RRC, Jamaludin SH, Silayoi B, Nasution RE. 1992. Musa L. (edible cultivars). In: Verheij EWM, Coronel RE, Eds. Plant Resources of South-East Asia No. 2. Edible fruits and nuts. Bogor, Indonesia: Prosea Foundations, 225-233.
FAOSTAT, 2014. Production crops: Tomatoes. FAOSTAT Agricultural production database. http://faostat3.fao.org
Faure S, Noyer JL, Horry JP, Bakry F, Lanaud C, Goazalez de Lean D. 1993. A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87(4) 517-526.
Gimenez, C.; De Garcia, E.; De Enrech, N. X.; Blanca, I. 2001. Somaclonal variation in banana: cytogenetic and molecuarl characterization of the somaclonal variant CIEN BTA-03. In Vitro Cell. Dev. Biol. Plant 37:217–222;.
Gubbuk, H.; Pekmezci, M.; Onus, A. N.; Erkan, M. 2004. Identi?cation and selection of superior banana phenotypes in the cultivar Dwarf Cavendish using agronomic characteristics and RAPD markers. Pak. J. Bot. 36:331–342;.
Hapsari L, Masrum A. 2012. Preliminary screening resistance of Musa germplasm for banana bunchy top disease in Purwodadi Botanic Garden, Pasuruan, East Java. Botanic Garden Buletin 15, 57-70.
Howell EC., HJ. Newbury, RL. Swennen RL, LA. Withers LA, BV. Ford-Lloyd. 1994. The use 361 of RAPD for identifying and classifying Musa germplasm. Genome 37(2):328–332.
Kaemmer D. 1992. Oligonucleotide and amplification fingerprinting of wild species and cultivars of banana (Musa spp.) Bio/Technol 10 (9): 1030–1035
Kamal F., Abdellatif, Adel E. Hegazy, Haron M. Aboshama, Hamdy A. Emara, Abdelhameed A. El-Shahed. 2012. Morphological and molecular characterization of somaclonal variations in tissue culture-derived banana plants, Journal of Genetic Engineering and Biotechnology 10, 47–53
Lamare, A., & Rao, S. R. 2015. Efficacy of RAPD, ISSR and DAMD markers in assessment of genetic variability and population structure of wild Musa acuminata colla. Physiology and molecular biology of plants : an international journal of functional plant biology, 21(3), 349–358. https://doi.org/10.1007/s12298-015-0295-1
Nasution, RE. 1991. A taxonomic study of the species Musa acuminate Colla with its intraspecific taxa in Indonesia. Memoirs of Tokyo University of Agriculture 32: 1- 14. Nat., 44, 223-270 www.pnas.org/cgi/doi/10.1073/ pnas.1102001108.
Poerba YS and Ahmad F. 2013. Genetic variation analyses of Musa balbisiana Colla based on 436 RAPD and ISSR marker. Berita Biologi 12(2):259-267 (In Bahasa Indonesia).
Prakash, S.; Elangomathavan, R.; Seshadri, S.; Kathiravan, K.; Ignacimuthu,S. 2004. Ef?cient regeneration of Curcuma amada Roxb. plantlets from rhizome and leaf sheath explants. Plant Cell Tiss. Organ Cult. 78:159–165;.
Shu, Q. Y.; Liu, G. S.; Qi, D. M.; Chu, C. C.; Liu, J.; Li, H. 2003. An effective axillary bud culture and RAPD analysis of clone plants in tetr aploid black locust. Plant Cell Rep. 22:175–180;.
Simmonds NW, Shepherd K, 1955, The taxonomy and origin of the cultivated bananas. Botany J Linnean Soc London, 55(359):302–312.
Simmonds NW. 1959. Bananas. New York, USA: Longman Inc, 22-43.
Tingey, S. V.; del Tufo, J. P. 1993. Genetic analysis with random ampli?ed polymorphic DNA markers. Plant Physiol. 101:349–352;.
Toral IMT, Caru M, Herrera MA, Gonzalez L, Martin LM, Miranda J, Navarro-Cerrillo RM. 2009. Clones identification of Sequoia sempervirens (D. Don) Endl. in Chile by using PCR-RAPDs tech-nique. J. Zhejiang Univ.-Sci B 10(2):112–119
Tsuda, Y., Goto, S., & Ide, Y. 2004. RAPD Analysis of Genetic Variation Within and Among Four Natural Populations of Betula maximowicziana. Silvae Genetica, 53, 234 - 239.
Ude G, Pillay M, Ogundwin E, Tenkouano A. 2003. Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255
Uma S, Siva SA, Saraswathi MS, Manickavasagam M, Durai P, Relvarajan S, Sathiamoorthy S. 2006. Variation and intraspecific relationships in Indian wild Musa balbisiana (BB)
Vidal, M. D. C.; de Garcia, E. 2000. Analysis of a Musa spp. Somaclonal variant resistant to Yellow Sigatoka. Plant Mol. Biol. Rep. 18:23–31;.
Welsh J and McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18,7213-7218
Williams JGK, Hanafey MK, Rafalski JA, Tingey SV. 1993. Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol. 218:705–740
Al-khairy, J.M., Ehab, M.B.M., Heba, S.A.T., Ahmed, S.E., Mohamed, A.E., Arafat, A.H.A.L., Adel, A.R., Wael, F.S., Mustafa, I.A., Tarek, A.S., Muhammad,N.S., Hesham, S.G., Mohamed, F.A., Khalid, M.A., Shri, M.J dan Abdallah, A.H. 2022. Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers. Plants, 11(1): 1-12.
Hanum, L., S.T. Wardana, Alazi, Y. Windusari, N. Aminasih dan E. Patriyono. 2020. Analyzing South Sumatra Red Rice Polymorphism Using Random 48 Amplified Polymorphic DNA (RAPD) Markers. Journal of Physics Conf.Series, 1480
Kiran, U., Moahnty, S. K., Roy, P. S., Behera, L., dan Chand, P. K. 2015. Genetic diversity among banana cultivars from Odisha using RAPD markers. Science Research Reporter, 5(2), 118-124.
Probojati, R.T., Didik, W dan Lia, H. 2019. Clustering Analysis and Genome Inference of Pisang Raja Local Cultivars (Musa spp.) from Java Island by Random Amplified Polymorphic DNA(RAPD) Marker. Tropical Biodiversity and Biotechnology, 4(2): 42-53.
Tawfik, R.S dan Almoataz, B.A.E. 2019. Molecular Genetic Studies On Abiotic Stress Resistance In Sorghum Entries Through Using Half Diallel Analysis And Inter-Simple Sequence Repeat (ISSR) Markers. Bulletin of the National Research Centre, 43(117): 1-17.
Tenda, E., M. Tulalo, dan Miftahorrachman. 2009. Hubungan Kekerabatan Genetik Antar Sembilan Aksesi Kelapa Asal Provinsi Sulawesi Utara. Littri, 15(3): 139-144
Verma, K.S., Shamshad, U., Sumita, K dan S.L. Kothari. 2017. RAPD and ISSR Marker Assessment Of Genetic Diversity in Citrullus colocynthis (L.) Schrad: a Unique Source Of Germplasm Highly Adapted To Drought And High-Temperature Stress. Biotech, 7(288): 1-24