Quality and fatty acid profiles of fish oil from tuna by-products extracted using a dry-rendering method

##plugins.themes.bootstrap3.article.main##

HEDER DJAMALUDIN
TITIK DWI SULISTIYATI
ANIES CHAMIDAH
PUTRI NURASHIKIN
MIFTAHUR ROIFAH
HARTOYO NOTONEGORO
PAMUNGKAS RIZKI FERDIAN

Abstract

Abstract. Djamaludin H, Sulistiyati TD, Chamidah A, Nurashikin P, Roifah M, Notonegoro H, Ferdian PR. 2023. Quality and fatty acid profiles of fish oil from tuna by-products extracted using a dry-rendering method. Biodiversitas 24: 5757-5763. Tuna is an export commodity with a high-fat content, making it a valuable source of fish oil. However, a substantial portion of tuna, including viscera, eyes, and liver, some parts are underutilized, leading to waste. The study aims to determine the impact of extraction temperature (50°C, 60°C, and 70°C) on the yield, peroxide value, free fatty acids (%), p-anisidine value, and total oxidation value of the extracted oil from tuna (Euthynnus sp.) by-products. This research used the dry-rendering method to extract crude oil from tuna by-products and analyze quality characteristics and fatty acids. The results from the proximate value indicated that the crude lipid content in tuna by-products ranged from 13.03% to 19.01%. Extraction temperature significantly affected the yield, with the highest yield at 70°C correlating with the highest lipid content in innards. The lowest peroxide value is obtained from an extraction temperature of 50°C from all parts of tuna by-products, ranging from 2.01 to 2.09 meq/kg. Free fatty acid (%) levels in this study met the International Fish Oil Standards (IFOS), and different temperature treatments had a significant effect (P<0.05). The lowest value of p-anisidine, 6.11 meq/kg, was obtained from an extraction temperature of 50°C for innards samples, and the p-anisidine value increased with temperature, reflecting secondary oxidation products. The total oxidation lowest value was obtained from extraction at 50°C (14.84 meq/kg) from viscera by IFOS (?20 meq/kg), and it was within acceptable limits. The fatty acid profile of the crude extract of tuna by-product oil resulting from extraction at a temperature of 50°C, where extraction results at 50°C obtained a fatty acid profile of saturated fatty acids>mono-unsaturated fatty acids>polyunsaturated fatty acids, with significant levels of omega-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid.

##plugins.themes.bootstrap3.article.details##

References
Adeoti I, Hawboldt K. 2014. A review of lipid extraction from fish processing by-product for use as a biofuel. Biomass Bioenerg 63 (2): 330-340. DOI: 10.1016/j.biombioe.2014.02.011.
Ahmed R, Haq M, Cho Y-J, Chun B-S. 2017. Quality evaluation of oil recovered from by-products of bigeye tuna using supercritical carbon dioxide extraction. Turk J Fish Aquat Sci 17: 663-672. DOI: 10.4194/1303-2712-v17402.
Ali MA, Najmaldien AHA, Latip RA, Othman NH, Majid FAA, Salleh LM. 2013. Effect of heating at frying temperature on the quality characteristics of regular and high-oleic acid sunflower oils. Acta Sci Pol Technol Aliment 12 (2): 159-167.
Alsufiani H, Ashour W. 2021. Effectiveness of the natural antioxidant 2,4,4?-Trihydroxychalcone on the oxidation of sunflower oil during storage. Molecules 26 (6): 1-14. DOI: 10.3390/molecules26061630.
Association of Official Analytical Chemist (AOAC). 2005. Official Method of Analysis of The Association of Official Analytical of Chemist. The Association of Analytical Chemist Inc., Arlington. DOI: 10.4236/ojapps.2012.23029.
Bahurmiz OM. 2019. Proximate and fatty acid composition of three tuna species from Hadhramout Coast of the Arabian Sea, Yemen. Hadhramout Univ J Nat Appl Sci 16 (1): 63-70.
Bustani S, Soni S. 2023. Review on the impact of peroxide value from edible oil: Indian perspective. J Surv Fish Sci 10 (2): 26-33.
Deepika D, Vegneshwaran VR, Julia P, Sukhinder KC, Sheila T, Heather M, Wade M. 2014. Investigation on oil extraction methods and its influence on omega-3 content from cultured salmon. J Food Process Tech 5 (12): 1-13. DOI: 10.4172/2157-7110.1000401.
Devadason C, Jayasinghe C, Sivakanesan R, Senarath S, Beppu F, Gotoh N. 2016. Acid composition of commercially important fish and shellfish from Sri Lanka and Japan. J Oleo Sci 65 (7): 543-556. DOI: 10.5650/jos.ess16056.
Dias APS, Ramos M, Rijo B. 2022. Rendering of beef tallow for biodiesel production: Microwave versus boiling water and acetone fat extraction. Processes 10 (4): 666. DOI: 10.3390/pr10040666.
Djamaludin H, Chamidah A. 2021. Analisis komposisi asam lemak ekstrak minyak mikroalga Spirulina sp. dengan metode ekstraksi yang berbeda. J Fish Mar Res 5 (2): 254-261. DOI: 10.21776/ub.jfmr.2021.005.02.10.
Durmus M. 2019. Fish oil for human health: Omega-3 fatty acid profiles of marine seafood species. Food Sci Technol 39: 454-461. DOI: 10.1590/fst.21318.
Ferdosh S, Sarker ZI, Norulaini N, Oliveira A, Yunus K, Chowdury AJ, Omar M. 2015. Quality of tuna fish oils extracted from processing the by?products of three species of neritic tuna using supercritical carbon dioxide. J Food Process Preserv 39 (4): 432-441. DOI: 10.1111/jfpp.12248.
Garofalo FS, Cavallini N, Demichellis F, Savorani F, Mancini G, Fino D, Tommasi T. 2023. From tuna viscera to added-value products: A circular approach for fish-waste recovery by green enzymatic hydrolysis. Food Bioprod Process 137: 155-167. DOI: 10.1016/j.fbp.2022.11.006.
Gonçalves RM, Petenuci ME, Maistrovicz FC, Galuch MB, Montanher PF, Pizzo JS, Gualda IP, Visentainer JV. 2021. Lipid profile and fatty acid composition of marine fish species from Northeast Coast of Brazil. J Food Sci Technol 58 (3): 1177-1189. DOI: 10.1007/s13197-020-04631-y.
Grossi M, Lecce GD, Arru M, Toschi TG, Riccò B. 2015. An opto-electronic system for in-situ determination of peroxide value and total phenol content in olive oil. J Food Eng 146: 1-7. DOI: ff10.1016/j.jfoodeng.2014.08.015.
Homayooni B, Sahari MA, Barzegar M. 2014. Concentrations of omega-3 fatty acids from rainbow sardine fish oil by various methods. Intl Food Res J 21 (2): 743-748.
Huli LO, Suseno SH, Joko S. 2014. Kualitas minyak ikan dari kulit ikan Swangi. Jurnal Pengolahan Hasil Perikanan Indonesia 17 (3): 233-242. DOI: 10.17844/jphpi.v17i3.8912. [Indonesian]
Hurria, Alfian A, Saleh MFRM, Djamaludin H, Mursyid M, Witno, Mahulette AS. 2023. Essential oils of Etlingera acanthodes A.D. Poulsen, an endemic ginger from Sulawesi Island. J Trop Biodivers Biotechnol 08 (02): 72117. DOI: 10.22146/jtbb.72117.
International Fish Oil Standard (IFOS). 2011. Fish Oil Purity Standards. www.omegavia.com/best-fish-oilsupplement-3/
Kandyliari A, Mallouchos A, Papandroulakis N, Golla JP, Lam TT, Sakellari A, Karavoltsos S, Vasiliou V, Kapsokefalou M. 2020. Nutrient composition and fatty acid and protein profiles of selected fish by-products. Foods 9: 1-14. DOI: 10.3390/foods9020190.
Kaur N, Chugh V, Gupta AK. 2014. Essential fatty acids as functional components of foods - A review. J Food Sci Technol 51 (10): 2289-2303. DOI: 10.1007/s13197-012-0677-0.
Luczynska J, Paszczyk B, Luczynski M. 2014. Fatty acid profiles in marine and freshwater fish from fish markets in Northeastern Poland. Arch Pol Fish 22: 181-188. DOI: 10.2478/aopf-2014-0018.
Mason RP, Sherratt SCR. 2017. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits. Biochem Biophys Res Commun 483 (1): 425-429. DOI: 10.1016/j.bbrc.2016.12.127.
Murillo E, Rao KS, Durant AA. 2014. The lipid content and fatty acid composition of four eastern central Pacific native fish species. J Food Compost Anal 33: 1-5. DOI: 10.1016/j.jfca.2013.08.007.
Niu Y, Xiang Y. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9 (915): 1-18. DOI: 10.3389/fpls.2018.00915.
Pietro MED, Mannu A, Mele A. 2020. NMR determination of free fatty acids in vegetable oils. Processes 8 (4): 410. DOI: 10.3390/pr8040410.
Priatni S, Ratnaningrum D, Kosasih W, Sriendah E, Srikandace Y, Rosmalina T, Pudjiraharti S. 2018. Protein and fatty acid profile of marine fishes from Java Sea, Indonesia. Biodiversitas 19 (5): 1737-1742. DOI: 10.13057/biodiv/d190520.
Pudtikajorn K, Benjakul S. 2020. Simple wet rendering method for extraction of prime quality oil from skipjack tuna eyeballs. Eur J Lipid Sci Technol 122 (2000077): 1-29. DOI: 10.1002/ejlt.202000077.
Pyz-?ukasik R, Cha?abis-Mazurek A, Gondeka M. 2020. Basic and functional nutrients in the muscles of fish: A review. Intl J Food Prop 23 (1): 1941-1950. DOI: 10.1080/10942912.2020.1828457.
Rehman K, Mohd Amin MC, Yuen NP, Zulfakar MH. 2016. Immunomodulatory effectiveness of fish oil and omega-3 fatty acids in human non-melanoma skin carcinoma cells. J Oleo Sci 65 (3): 217-224. DOI: 10.5650/jos.ess15256.
Šimat V, Vlahovi? J, Soldo B, Mekini? IG, ?agalj M, Hamed I, Skroza D. 2020. Production and characterization of crude oils from seafood processing by-products. Food Biosci 33 (100484): 1-8. DOI: 10.1016/j.fbio.2019.100484.
Srichan R, Worawattanameteekul W, Tepwong P. 2018. Seasonal variation and regression prediction of fatty acid compositions in tuna oil from three tuna species (Katsuwonus pelamis, Thunnus tonggol and Euthynnus affinis). Food Appl Biosci J 6 (1): 53-64. DOI: 10.14456/fabj.2018.5.
Suseno SH, Rizkon AK, Jacoeb AM, Kamini, Listiana D. 2021. Fish oil extraction as a by-product of tilapia (Oreochromis sp.) fish processing with dry rendering method. IOP Conf Ser: Earth Environ Sci 679 (012009): 1-7. DOI: 10.1088/1755-1315/679/1/012009.
Troesch B, Eggersdorfer M, Laviano A, Rolland Y, Smith AD, Warnke I, Weimann A, Calder PC. 2020. Expert opinion on benefits of long-chain omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients 12 (9): 1-25. DOI: 10.3390/nu12092555.
Vasile FE, Romero AM, Judis MA, Mazzobre MF. 2016. Prosopis alba exudate gum as excipient for improving fish oil stability in alginate-chitosan beads. Food Chem 190: 1093-1101. DOI: 10.1016/j.foodchem.2015.06.071.
Yuan Y, Cui C, Liu H, Li X, Cao Y, Zhang Y, Yan H. 2022. Effects of oxidation and hydrolysis of frying oil on MCPD esters formation in Chinese fried dough sticks. LWT-Food Sci Technol 154 (112576): 1-8. DOI: 10.1016/j.lwt.2021.112576.
Zhang X, Ning X, He X, Yu X, Cheng Y, Yu R-Q, Wu Y. 2020. Fatty acid composition analyses of commercially important fish species from the Pearl River Estuary, China. PLoS One 15 (1): e0228276. DOI: 10.1371/journal.pone.0228276.