Effectiveness of potassium humate and endophytic bacteria from Serratia marcescens strain NPKC3_2_21 in increasing root weight of paddy cultivation in acidic soil

##plugins.themes.bootstrap3.article.main##

GUNAWAN SUTIO
ISKANDAR
LILIK T. INDRIYATI
GUNAWAN DJAJAKIRANA

Abstract

Abstract. Sutio G, Iskandar, Indriyati LT, Djajakirana G. 2023. Effectiveness of potassium humate and endophytic bacteria from Serratia marcescens strain NPKC3_2_21 in increasing root weight of paddy cultivation in acidic soil. Biodiversitas 24: 6316-6322. Phosphorus (P) deficiency is a significant factor limiting rice agricultural production in acidic soil. The availability of P in acidic soil is generally insufficient because a substantial portion of P is absorbed by Al³? and Fe²?, rendering it inaccessible to plants. This P deficiency in acidic soil hampers proper root growth. However, this limitation can be overcome by the application of potassium humate and endophytic bacteria. The objective of this study was to investigate the effects of phosphate fertilizer with and without potassium humate and/or endophytic bacteria on root growth in acidic fields. The research involved two treatment factors. The first factor comprised four levels of ex-madura phosphate rock fertilizer: 100% (1), 75% (2), 50% (3), 25% (4), and no application of phosphate rock fertilizer (5) and the second factor included potassium humate (A), endophytic bacteria from Serratia marcescens strain NPKC3_2_21 (B), a combination of potassium humate and S. marcescens endophytic bacteria (C), and the absence of both potassium humate and S. marcescens endophytic bacteria (D). The results revealed a positive interaction between phosphate fertilizer, the combination of potassium humate, and S. marcescens endophytic bacteria. Therefore, utilizing endophytic bacteria from S. marcescens and potassium humate could be an effective strategy for increasing root biomass in rice plants grown in acidic soil with a deficiency in available P.

##plugins.themes.bootstrap3.article.details##

References
Abdelsalam A, Chowdhury K, El-Bakry A. 2017. Micropropagation through In Vitro Tillering from Seed Cultures of the Medicinal Plant Cymbopogon schoenanthus subsp. Proximus. Asian Journal of Applied Sciences 05(01): 2321 – 0893
Abreo E, Altier N. 2019. Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Scientific Reports 9(1): 1–8. DOI: 10.1038/s41598-018-37118-0
Aisha H, Ali MR, Shafeek, Mahmoud R, Asmaa, El-Desuki M. 2014. Effect of various levels of organic fertilizer and humic acid on the growth and roots quality of turnip plants (Brassica rapa). Current Science International 3(1): 7-14
Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metsger JD. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology 84: 7-14.
Benyamin. 2000. Perakaran padi dalam hubungannya dengan toleransi tanaman terhadap kekeringan dan hasil. Jurnal Litbang Pertanian. 21(3): 100-108
Boogar AR, Shirmohammadi E, Geikloo A. 2014. Effect of humic acid application on qualitative characteristic and micronutrient status in Petunia hybrid L. Bull. Env. Pharmacol. Life Sci 3 (9): 15-19
Canellas LP, Olivares FL. 2014. Physiological responses to humic substances as plant growth promoter. Chem Biol Technol. Agric 1(3). DOI: 10.1186/2196- 5641-1-3.
Canellas LP, Olivares FL. 2017. Production of border cells and colonization of maize root tips by Herbaspirillum seropedicae are modulated by humic acid. Plant and Soil 417: 403–413. DOI: 10.1007/s11104-017-3267-0.
Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR. 2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130: 1951–1957. DOI: 10.1104/pp.007088.
Devi KA, Pandey P, Sharma GD. 2016. Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L.,a Medicinal Plant. Hayati Journal of Biosciences 23(4): 173–180. DOI: 10.1016/j.hjb.2016.12.006
Drewry J, Stevenson B, Kannemeyer R. 2022. Soil nutrients. Soil Health Factsheet. Manaaki Whenua – Landcare Research. https://www.landcareresearch.co.nz/discover-our-research/land/soil-andecosystem-health/soil-health-and-resilience/publications/
Ebrahimi M, Miri E. 2016. Effect of Humic Acid on Seed Germination and Seedling Growth of Borago officinalis and Cichorium intybus. Ecopersia 4 (1): 1239-1249. DOI: 10.18869/modares.ecopersia.4.1.1239
Galambos N, Compant S, Moretto M, Sicher C, PuopoloG, Wäckers F, Sessitsch A, Pertot I, Perazzolli M. 2020. Tomato promoted by endophytic bacterial strains through the activation of hormone-, growth-, and transcription-related processes. Front. Plant Sci 11: 582267. Doi: 10.3389/fpls.2020.582267
Gong A, Wang G, Sun Y, et al. 2022. Dual activity of Serratia marcescens Pt-3 in phosphate-solubilizing and production of antifungal volatiles. BMC Microbiology 22(1): 26. DOI: 10.1186/s12866-021-02434-5
Gyaneshwar P, James EK, Mathan N, Reddy P. M, Reinhold-Hurek B, Ladha JK. 2001. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of Bacteriology. Handayani, Tatang W, Suratman. Studi Bioleaching Batuan Fosfat Menggunakan Jamur Aspergillus Niger. Jurnal Teknologi Mineral dan Batubara 5(4): 183-190.
Hartatik W & Widowati LR. 2015. Pengaruh pupuk majemuk NPKS dan NPK terhadap pertumbuhan dan hasil padi sawah pada inceptisol. Penelitian Pertanian Tanaman Pangan. Vol. 34(3). 2015.
Jupatanakul N, Pengon J, Selisana, SMG, Choksawangkarn W, Jaito N, Saeung A, Bunyong R., Posayapisit N, Thammatinna K, Kalpongnukul N, Aupalee K, Pisitkun T, Kamchonwongpaisan S. 2020. Serratia marcescens secretes proteases and chitinases with larvicidal activity against Anopheles dirus. Acta Tropica 212(April): 105686. DOI: 10.1016/j.actatropica.2020.105686
Kalayu, G. 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy 4917256. DOI: 10.1155/2019/4917256
Kshetri L, Naseem F, Pandey P. (2019). Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability. Springer, Singapore.
Kumar D, Singh AP, Raha P, Rakshit A, Singh CM, Kishor P. 2013. Potassium humate: a potential soil conditioner and plant growth promoter. International Journal of Agriculture, Environmental & Biotechnology 6(3): 441 – 446. DOI: 10.5958/j.2230-732X.6.3.015
Lakiban. 1996. Drought resistance and adaptation to water deficits in crop plants. In: Mussell H, Staples RC (eds) Stress physiology in crop plants. John Wiley and Sons, New York.
Lestri A. 2006. Studi Pemanfaatan Asam Humat Hasil Ekstraksi dari Andosol dan Gambut dalam Pertumbuhan Semaian Padi (Oryza sativa). [Skripsi]. Program Studi Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor, Bogor. [Indonesian]
Lisdiyanti M, Sarifuddin, Guchi H. 2018. The Influence of Humic Matter and Phosforus Fertilizer for Increasing Available P in Ultisol. Jurnal Pertanian Tropik 5(2): 192- 198
Li Y. 2020. Research progress of humic acid fertilizer on the soil. Journal of Physics: Conference Series. ESAET. DOI 10.1088/174-6596/1549/2/022004.
Li Y, Guo L, Haggblom MM, Yang R, Li M, Sun X, ... and Sun W. 2022. Serratia spp. are responsible for nitrogen fixation fueled by As (III) oxidation, a novel biogeochemical process identified in mine tailings. Environmental Science & Technology 56(3): 2033-2043. DOI: 10.1021/acs.est.1c06857
Lumactud RA, Linda YG, Malinda ST. 2022. Impacts of humic – based products on the microbial community structure and functions toward sustainable agriculture. Departement of Agricultural, Food and Nutritional Science. University of Alberta. Edmonton. AB. Canada.
Mohamed EAH, Farag A, Youssef, SA. 2018. Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. Journal of Environmental Protection 09: 266-277. DOI: 10.4236/jep.2018.93018.
Nardi S, Pizzeghello D, Muscolo A, Vianello A. 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry 34: 1527- 1536.
Niu H, Sun Y, Zhang Z, Zhao D, Wang N, Wang L, Guo H. 2022. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res 256: 126956. DOI: 10.1016/j.micres.2021.126956
Prasetya BH, Sri JA, Kasdi S, Simanungkalit RDM. 2014. Mineralogi, Kimia, Fisika, Dan Biologi Lahan Sawah. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat (Puslitbangtanak). Bogor.
Rahmi E et al. 2022. Soil amelioration using several types of humic substances extracted from andisol, spodosol, peat and lignite to increase the growth of corn plants (Zea mays). IOP Conf. Ser.: Earth Environ. Sci 1115 012089. DOI:10.1088/1755-1315/1115/1/012089
Rini EP, Sugiyanta. 2022. Aplikasi Senyawa Humat Untuk PErbaikan Kualitas Tanah dan Peningkatan Pertumbuhan Tanaman Cabai. Jurnal Ilmu – Ilmu Pertanian Indonesia. P- ISSN: 1411-0067.
Satyaprakash M, Nikitha T, Reddi EUB, Sahdana B, Vani SS. 2017. A
review on phosphorus and phosphate solubilizing bacteria and their
role in plant nutrition. Intl J Curr Microbiol Appl Sci 6: 2133-2144.
DOI: 10.20546/ijcmas.2017.604.251.
Sharma B, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2: 587.
Silva MRSA, Tavares OCH, Ribeiro TG, Reis CS, Mina MG, Baldani VLD, García AC, Berbara RLL, Conceiç E. 2021. Humic acids enrich the plant microbiota with bacterial candidates for the suppression of pathogens. Applied Soil Ecology 168 (2021) 10414. DOI: 10.1016/j.apsoil.2021.104146
Stober et al. 2000. Pertumbuhan akar dan respons terhadap nitrogen. In: Schulze, ED. (eds) Siklus Karbon dan Nitrogen di Ekosistem Hutan Eropa. Studi Ekologi, Berlin, Heidelberg.
Sutio G, Azzahra NA, Maharani R, and Basri M. 2023. Serratia marcescens strain NPKC3_2_21 as endophytic phosphate solubilizing bacteria and entomopathogen: Promising combination approach as rice biofertilizer and biopesticide. Biodiversitas 24(2): 901–909. DOI: 10.13057/biodiv/d240228
Tavares OCH, Santos LA, Filho DF, Ferreira LM, García AC, Castro TAVT, Zonta E, Pereira MG, Fernandes MS. 2020. Response surface modeling of humic acid stimulation of the rice (Oryza sativa L.) root system. Arch. Agron. Soil Sci: 1–14. DOI: 10.1080/03650340.2020.1775199.
Thakuria D, Hazarika S. 2016. Soil Acidity and Management Options. Indian Journal of Fertilisers 12 (12): 40-56
Tiwari J, Ramanathan A, Baudhh K, Korstad J. 2023. Humic substances: structure, function and benefits for agroecosystems – a review 33(2): 237-249. DOI: 10.1016/j.pedsph.2022.07.008
Verma SK, Sahu PK, Kumar K, Pal1 G, Gond SK, Kharwar RN, White JF. 2021. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology. ISSN: 1364-5072. DOI:10.1111/jam.15111
Walpola BC, Yoon M. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review. African Journal of Microbiology Research. 6: 6600–6605. DOI: 10.5897/AJMR12.889
Wang P, Guo J, Xu X, Yan X, Zhang K, Qiu Y, Zhao Q, Huang K, Luo X, Yang F, Guo H, Hu S. 2020. Soil acidification alters root morphology, increases root biomass but reduces root decomposition in an alpine grassland. Environmental Pollution 265: 115016. DOI: 10.1016/j.envpol.2020.115016.