Heterotrigona itama workers bees homing ability as the basis for colony placement




Abstract. Rusdimansyah R, Khasrad K, Jaswandi J, Rusfidra R, Aulia D. 2024. Heterotrigona itama workers bees homing ability as the basis for colony placement. Biodiversitas 25: 2478-2483. This study aimed to evaluate the ability of Heterotrigona itama worker bees to return to the nest from various test distances. This research is an observational study using the translocation method. There were 550 individuals of H. itama worker bees from 5 colonies reared for over two years. Each worker bee sample was identified with a mark in the form of water-based paint before being released at a testing distance every 100 meters until a distance where no more worker bees returned. The camera with a macro lens is installed at the entrance to the beehive to record worker bees returning to the hive. The video recording process was carried out over 90 minutes. The parameters observed included environmental temperature and humidity, the number of worker bees returning, and the time required for worker bees to return from each test distance. The data obtained were analyzed using Chi-square, Kruskal-Wallis, and Mann-Whitney U-test. The research showed that the maximum distance that H. itama worker bees can travel to return to the nest was 1000 meters. However, the most effective return distance was more than 500 meters because although some worker bees can return from greater distances, the number of returns significantly decreases after passing 500 meters. Therefore, the ideal distance for placing a colony of H. itama is less than 500 meters from the source of bee food plants. The minimum distance to move a colony from the initial location to a new location is around 1100 meters.


Aldasoro-Maya EM, Rodríguez-Robles U, Martínez-Gutiérrez ML, Chan-Mutul GA, Avilez-López T, Morales H, Ferguson BG, Mérida-Rivas JA. 2023. Stingless bee keeping: Biocultural conservation and agroecological education. Front. Sustain. Food Syst. 6. DOI:10.3389/fsufs.2022.1081400.
Baird E, Tichit P, Guiraud M. 2020. The neuroecology of bee flight behaviours. Curr. Opin. Insect Sci. 42:8–13. DOI:10.1016/j.cois.2020.07.005.
Basari N, Ramli SN, Khairi N ‘Aina SM. 2018. Food reward and distance influence the foraging pattern of stingless bee, heterotrigona itama. Insects. 9(4):1–10. DOI:10.3390/insects9040138.
Campbell AJ, Gomes RLC, da Silva KC, Contrera FAL. 2019. Temporal variation in homing ability of the neotropical stingless bee Scaptotrigona aff. postica (Hymenoptera: Apidae: Meliponini). Apidologie. 50(5):720–732. DOI:10.1007/s13592-019-00682-z.
Chakravarthi A, Kelber A, Baird E, Dacke M. 2017. High contrast sensitivity for visually guided flight control in bumblebees. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol. 203(12):999–1006. DOI:10.1007/s00359-017-1212-6.
Ciar RR, L. S. Bonto, Bayer MHP, Rabajante JF, Lubag SP, Fajardo AC, Cervancia CR. 2013. Foraging behavior of stingless bees ( Tetragonula biroi Friese ): distance , direction and height of preferred. Food Sourc(1):1–60. DOI:10.48550/arXiv.1310.3919.
Costa L, Nunes-Silva P, Galaschi-Teixeira JS, Arruda H, Veiga JC, Pessin G, de Souza P, Imperatriz-Fonseca VL. 2021. RFID-tagged amazonian stingless bees confirm that landscape configuration and nest re-establishment time affect homing ability. Insectes Soc. 68(1):101–108. DOI:10.1007/s00040-020-00802-4.
Engel MS, Kahono S, Peggie D. 2019. A key to the genera and subgenera of stingless bees in Indonesia (Hymenoptera: Apidae). Treubia. 45(December):65–84. DOI:10.14203/treubia.v45i0.3687.
Ghosh S, Jeon H, Jung C. 2020. Foraging behaviour and preference of pollen sources by honey bee (Apis mellifera) relative to protein contents. J. Ecol. Environ. 44(1):1–7. DOI:10.1186/s41610-020-0149-9.
Herwina H, Salmah S, Janra MN, Mairawita, Nurdin J, Jasmi, Yaherwandi, Rusdimansyah, Sari DA. 2021. Stingless bee-keeping (Hymenoptera: Apidae: Meliponini) and Its Potency for Other Related-Ventures in West Sumatra. J. Phys. Conf. Ser. 1940(1):12073. DOI:10.1088/1742-6596/1940/1/012073.
Jaffé R, Pope N, Acosta AL, Alves DA, Arias MC, De la Rúa P, Francisco FO, Giannini TC, González-Chaves A, Imperatriz-Fonseca VL, et al. 2016. Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Mol. Ecol. 25(21):5345–5358. DOI:10.1111/MEC.13852. [diunduh 2023 Nov 28]. Tersedia pada: https://onlinelibrary.wiley.com/doi/full/10.1111/mec.13852
Kelber A, Somanathan H. 2019. Spatial vision and visually guided behavior in apidae. Insects. 10(12). DOI:10.3390/insects10120418.
Lecoeur J, Dacke M, Floreano D, Baird E. 2019. The role of optic flow pooling in insect flight control in cluttered environments. Sci. Rep. 9(1):1–14. DOI:10.1038/s41598-019-44187-2.
Melia S, Aritonang SN, Juliyarsi I, Kurnia YF, Rusdimansyah, Hernita VO. 2022. The screening of probiotic lactic acid bacteria from honey of stingless bee from West Sumatra, Indonesia and using as starter culture. Biodiversitas. 23(12):6379–6385. DOI:10.13057/biodiv/d231235.
Nunes-Silva P, Costa L, Campbell AJ, Arruda H, Contrera FAL, Teixeira JSG, Gomes RLC, Pessin G, Pereira DS, de Souza P, et al. 2020. Radiofrequency identification (RFID) reveals long-distance flight and homing abilities of the stingless bee Melipona fasciculata. Apidologie. 51(2):240–253. DOI:10.1007/s13592-019-00706-8.
Purwanto H, Soesilohadi RCH, Trianto M. 2022. Stingless bees from meliponiculture in South Kalimantan, Indonesia. Biodiversitas. 23(3):1254–1266. DOI:10.13057/biodiv/d230309.
Quezada-Euán JJG. 2018. Stingless Bees of Mexico. Springer, Yucatan.
Redhead JW, Dreier S, Bourke AFG, Heard MS, Jordan WC, Sumner S, Wang J, Carvell C. 2015. Effects of habitat composition and landscape structure on worker foraging distances of five bumblebee species. Ecol. Appl. 26(3):150819033522003. DOI:10.1890/15-0546.1.
Rodrigues F, Ribeiro MF. 2014. Influence of experience on homing ability of foragers of Melipona mandacaia Smith (Hymenoptera: Apidae: Meliponini). Sociobiology. 61(4):523–528. DOI:10.13102/sociobiology.v61i4.523-528.
Souza-Junior JBF, Teixeira-Souza VH da S, Oliveira-Souza A, de Oliveira PF, de Queiroz JPAF, Hrncir M. 2020. Increasing thermal stress with flight distance in stingless bees (Melipona subnitida) in the Brazilian tropical dry forest: Implications for constraint on foraging range. J. Insect Physiol. 123(May):104056. DOI:10.1016/j.jinsphys.2020.104056.
Wayo K, Leonhardt SD, Sritongchuay T, Bumrungsri S. 2022. Homing ability in a tropical Asian stingless bee is influenced by interaction between release distances and urbanisation. Ecol. Entomol. 47(4):536–543. DOI:10.1111/EEN.13138.
Wilson RS, Keller A, Shapcott A, Leonhardt SD, Sickel W, Hardwick JL, Heard TA, Kaluza BF, Wallace HM. 2021. Many small rather than few large sources identified in long-term bee pollen diets in agroecosystems. Agric. Ecosyst. Environ. 310:107296. DOI:10.1016/J.AGEE.2020.107296.
Wright IVR, Roberts SPM, Collins BE. 2015. Evidence of forage distance limitations for small bees ( Hymenoptera?: Apidae ). 112(2):303–310. DOI:10.14411/eje.2015.028.

Most read articles by the same author(s)