Mangrove density and delta formation in Segara Anakan Lagoon as an impact of the riverine sedimentation rate

##plugins.themes.bootstrap3.article.main##

TRI NUR CAHYO
AGUS HARTOKO
MAX RUDOLF MUSKANANFOLA
HAERUDDIN
ENDANG HILMI

Abstract

Abstract. Cahyo TN, Hartoko A, Muskananfola MR, Haeruddin, Hilmi E. 2024. Mangrove density and delta formation in Segara Anakan Lagoon as an impact of the riverine sedimentation rate. Biodiversitas 25: 1276-1285. Segara Anakan Lagoon (SAL) is in Southwestern of Central Java Province, Indonesia. The Western Part of SAL (WP-SAL) gets its sediment load from the Citanduy River. This research aimed to determine the temporal pattern of the shoreline, water body area, depth, delta formation, and mangrove density at WP-SAL. Shoreline data were extracted from a base map and the satellite imagery. Overlapping analysis of several shorelines and depth maps showed different results in terms of values or patterns. The western part of SAL had silted up and reached more than 85% in 161 years. The sediment accretion impacted the shoreline (between 177 ha yr-1 in 1999-2003), and the average decrease of the water bodies speed was 61 ha yr-1. The Pelawangan Barat waters (PBW) and the main lagoon had a decreasing depth because of the sediment deposits. The sedimentation also greatly impacts mangrove species distribution, clustering and association, and density and mangrove affinity. Mangrove density growth-based and the delta formation were formed and developed following the tidal pattern during floods and ebbs. It can be used to predict the future morphology of WP-SAL. The WP-SAL will be sediment filled and left the waterways channels, it was reached within 13.6 years from 2018, which would be in 2032.

##plugins.themes.bootstrap3.article.details##

References
Brunskill, G. J., Zagorskis, I., Pfitzner, J., Ellison, J. 2004. Sediment and trace element depositional history from the Ajkwa River estuarine mangroves of Irian Jaya (West Papua), Indonesia. Continental Shelf Research, 24(19), 2535–2551. https://doi.org/10.1016/j.csr.2004.07.024
Cahyo, T. N., Nurjaya, I. W., Natih, N. M. N. 2012. Hidrodinamika Dan Sebaran Materi Padatan Tersuspensi Di Perairan Pelawangan Barat, Segara Anakan Cilacap. Institut Pertanian Bogor.
Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., Justice, C. 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219, 145–161. https://doi.org/10.1016/j.rse.2018.09.002
Congedo, L. 2021. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172
Dharmawan, B., Böcher, M., Krott, M. 2016. The failure of the mangrove conservation plan in Indonesia: Weak research and an ignorance of grassroots politics. Ocean Coastal Management, 130, 250–259. https://doi.org/10.1016/j.ocecoaman.2016.06.019
Feyisa, G. L., Meilby, H., Fensholt, R., Proud, S. R. 2014. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029
Ford, M. R., Dickson, M. E. 2018. Detecting ebb-tidal delta migration using Landsat imagery. Marine Geology, 405, 38–46. https://doi.org/10.1016/j.margeo.2018.08.002
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Guo, Q., Pu, R., Li, J., Cheng, J. 2017. A weighted normalized difference water index for water extraction using Landsat imagery. International Journal of Remote Sensing, 38(19), 5430–5445. https://doi.org/10.1080/01431161.2017.1341667
Hilmi, E., Sari, L. K., Cahyo, T. N., Amron, A., Siregar, A. S. 2021. The Sedimentation Impact for the Lagoon and Mangrove Stabilization. E3S Web of Conferences, 324, 02001. https://doi.org/10.1051/e3sconf/202132402001
Hilmi, E., Sari, L. K., Mahdiana, A., Junaidi, T., Muslih, M., Samudra, S. R., Prayogo, N. A., Baedowi, M., Cahyo, T. N., Putra, R. R. D., Sari, F. A. 2022. Mapping of Mangrove Ecosystem In Segara Anakan Lagoon using Normalized Different Vegetation Index and Dominant Vegetation Index. Omni-Akuatika, 18(2), 165. https://doi.org/10.20884/1.oa.2022.18.2.926
Holtermann, P., Burchard, H., Jennerjahn, T. 2009. Hydrodynamics of the Segara Anakan lagoon. Regional Environmental Change, 9(4), 245–258. https://doi.org/10.1007/s10113-008-0075-3
Jawak, S. D., Vadlamani, S. S., Luis, A. J. 2015. A Synoptic Review on Deriving Bathymetry Information Using Remote Sensing Technologies: Models, Methods and Comparisons. Advances in Remote Sensing, 04(02), 147–162. https://doi.org/10.4236/ars.2015.42013
Jeppesen, J. H., Jacobsen, R. H., Inceoglu, F., Toftegaard, T. S. 2019. A cloud detection algorithm for satellite imagery based on deep learning. Remote Sensing of Environment, 229, 247–259. https://doi.org/10.1016/j.rse.2019.03.039
Li, S., Wang, W., Ganguly, S., Nemani, R. R. 2018. Radiometric Characteristics of the Landsat Collection 1 Dataset. Advances in Remote Sensing, 07(03), 203–217. https://doi.org/10.4236/ars.2018.73014
Lukas, M. C. 2014a. Cartographic Reconstruction of Historical Environmental Change. Cartographic Perspectives, 78, 5–24. https://doi.org/10.14714/CP78.1218
Lukas, M. C. 2014b. Eroding battlefields: Land degradation in Java reconsidered. Geoforum, 56, 87–100. https://doi.org/10.1016/j.geoforum.2014.06.010
Lukas, M. C. 2015. Neglected Treasures: Linking Historical Cartography with Environmental Changes in Java, Indonesia. Cartographica: The International Journal for Geographic Information and Geovisualization, 50(3), 141–162. https://doi.org/10.3138/cart.50.3.2891
Lukas, M. C. 2017. Widening the scope: linking coastal sedimentation with watershed dynamics in Java, Indonesia. Regional Environmental Change, 17(3), 901–914. https://doi.org/10.1007/s10113-016-1058-4
Manez, K. S. 2010. Java ’ s forgotten pearls?: the history and disappearance of pearl fishing in the Segara Anakan lagoon , South Java , Indonesia. 36, 367–376. https://doi.org/10.1016/j.jhg.2010.03.004
Maurya, K., Mahajan, S., Chaube, N. 2021. Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z
Muskananfola, M., Erzad, A., Hartoko, A. 2021. Hydro-oceanographic characteristics and sedimentation in the waters of Kemujan Island, Karimunjawa, Indonesia. AACL Bioflux, 14, 2866–2877.
Muskananfola, M. R., Supriharyono, Febrianto, S. 2020. Spatio-temporal analysis of shoreline change along the coast of Sayung Demak, Indonesia using Digital Shoreline Analysis System. Regional Studies in Marine Science, 34, 101060. https://doi.org/10.1016/j.rsma.2020.101060
Özelkan, E. 2020. Water Body Detection Analysis Using NDWI Indices Derived from Landsat-8 OLI. Polish Journal of Environmental Studies, 29(2), 1759–1769. https://doi.org/10.15244/pjoes/110447
Prayogo, L. M. 2021. Comparison of Normalized Difference Water Index (NDWI) and Sobel Filter Methods in Landsat 8 Imagery for Coastline Extraction. Jurnal Perikanan Dan Kelautan, 11(1). https://doi.org/10.33512/jpk.v11i1.11004
Salghuna, N. N., Bharathvaj, S. A. 2015. Shoreline Change Analysis for Northern Part of the Coromandel Coast. Aquatic Procedia, 4, 317–324. https://doi.org/10.1016/J.AQPRO.2015.02.043
Truong, S. H., Ye, Q., Stive, M. J. F. 2017. Estuarine Mangrove Squeeze in the Mekong Delta, Vietnam. Journal of Coastal Research, 33(4), 747–763. https://doi.org/10.2112/jcoastres-d-16-00087.1
Winarso, G., Rosid, M. S., Kamal, M., Asriningrum, W., Margules, C., Supriatna, J. 2023. Comparison of Mangrove Index (MI) and Normalized Difference Vegetation Index (NDVI) for the detection of degraded mangroves in Alas Purwo Banyuwangi and Segara Anakan Cilacap, Indonesia. Ecological Engineering, 197, 107119. https://doi.org/10.1016/j.ecoleng.2023.107119
Xu, H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179.