Assessment of nematode and microbial diversity and screening of entomopathogens in revegetated post-coal-mining land in Kutai Kartanegara District, East Kalimantan, Indonesia

##plugins.themes.bootstrap3.article.main##

SOPIALENA
ROSFIANSYAH
ANDI SURYADI

Abstract

Abstract. Sopialena, Rosfiansyah, Suryadi A. 2024. Assessment of nematode and microbial diversity and screening of entomopathogens in revegetated post-coal-mining land in Kutai Kartanegara District, East Kalimantan, Indonesia. Biodiversitas 25: 2921-2930. Post-coal-mining management should strive toward site revegetation. The success of such revegetation efforts is largely determined by the soil's fertility status, which encompasses physical, chemical, and biological components. Biological fertility is indicated by the presence and abundance of soil microbes and nematodes. The objective of this study was to identify the diversity of nematodes and soil microbes in ex-coal-mining land revegetated with oil palm in Kutai Kartanegara District (East Kalimantan, Indonesia), to screen for entomopathogenic nematodes and microbes, and to analyze their relationships with the chemical fertility status of the land. As a control, non-mining land was also investigated. The results showed that microbial diversity and density (including fungi and bacteria) in the ex-coal-mining area were significantly lower compared to the control. Additionally, a decrease in microbial diversity and density was found in deeper soil layers of both post-mining and non-mining lands. In contrast, soil nematodes were more abundant in post-mining land, both in terms of diversity and density, and were also more plentiful in the deeper soil layers. Among the nematodes and microbes studied, only Heterorhabditis and Steinernema (nematodes), Trichoderma (fungi), and Bacillaceae (bacteria) were identified as entomopathogens, causing death in Tenebrio molitor L. larvae. Overall, soil fertility in ex-coal-mining land was observed to be lower, characterized by decreased soil pH, basic saturation, Soil Organic Carbon (SOC), and nutrient content, which contributed to a reduced microbial community compared to non-mining land.

##plugins.themes.bootstrap3.article.details##

References
Aguado-Norese, C, Cárdenas, V, Gaete, A. 2023. Biol Res 56 (35). DOI:10.1186/s40659-023-00445-2
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson Palme J, Anslan, S, Coelho LP, Harend H, Huerta Cepas J. 2017. Structure and function of the global topsoil microbiome". Nature. 560 (7717): 233–237. DOI:10.1038/s41586-018-0386-6.
Bertola M, Ferrarini A, Visioli G. 2021. Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms 9 (7): 1400. DOI: 10.3390/microorganisms9071400
Boro M, Sannyasi S, Chettri D, Verma AK. 2022. Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Arch Microbiol. 204 (11): 666. DOI: 10.1007/s00203-022-03279-w.
Boucias, D. G., & Pendland, J. C. (2018). Principles of insect pathology. Springer.
Brahmaprakash GP. 2021. Soil Microbes are Shaped by Soil Physico-chemical Properties: A Brief Review of Existing Literature. International Journal of Plant & Soil Science. 59-71. DOI. 10.9734/ijpss/2021/v33i130409
Castrillo, L. A., Vida, C., Laich, F., Stritzler, M., & Soria, M. (2017). Diversity and survival of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in agricultural soils of Argentina. Applied Soil Ecology, 115, 10-18.
Cheng J, Ma W, Hao B, Liu X, Li FY. 2021. Divergent responses of nematodes in plant litter versus in top soil layer to nitrogen addition in a semi-arid grassland, Applied Soil Ecology, Volume 157, 103719. DOI: 10.1016/j.apsoil.2020.103719.
Cui, G., Zhu, L., Zhou, Q., Ren, S., & Wang, J. (2021). Geochemical reactions and their effect on CO2 storage efficiency during the whole process of CO2 EOR and subsequent storage. International Journal of Greenhouse Gas Control. https://doi.org/10.1016/j.ijggc.2021.103335
Dandwate SC. 2020. Analysis of soil samples for its physicochemical parameters from Sangamner city. GSC Biological and Pharmaceutical Sciences, 12 (02): 123-128. DOI: 10.30574/gscbps.2020.12.2.0243
de Quadros PD, Zhalnina K, Davis-Richardson AG, Drew JC, Menezes FB, Camargo F A de O, Triplett EW. 2016. Coal mining practices reduce the microbial biomass, richness and diversity of soil, Applied Soil Ecology, 98: 195-203. DOI: 10.1016/j.apsoil.2015.10.016.
Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 60(5), 1-44.
García-Lara S, Saldivar SOS. 2016. Insect Pests. Editor(s): Benjamin Caballero, Paul M. Finglas, Fidel Toldrá, Encyclopedia of Food and Health, Academic Press: 432-436. ISBN 9780123849533. DOI: 10.1016/B978-0-12-384947-2.00396-2.
Gattinger A, Palojärvi A, Schloter M. 2008. Chapter 3.4-Soil Microbial Communities and Related Functions, Editor(s): Schröder P, Pfadenhauer J, Munch JC. Perspectives for Agroecosystem Management, Elsevier: 279-292. DOI: 10.1016/B978-044451905-4.50011-8.
Gerke, J. 2022. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 6 (33). DOI: 10.3390/soilsystems6020033
Guo J, Wu Y, Wu X, Ren Z, Wang G. 2021. Soil bacterial community composition and diversity response to land conversion is depth-dependent. Global Ecology and Conservation 32: 2351-9894. DOI: 10.1016/j.gecco.2021.e01923.
Helbig, K., Bleuel, C., Krauss, G. J., & Nies, D. H. (2008). Glutathione and transition-metal homeostasis in Escherichia coli. Journal of Bacteriology, 190(15), 5431–5438. https://doi.org/10.1128/JB.00271-08
Hucker, G. J. (1921). a New Modification and Application of the Gram Stain. Journal of Bacteriology, 6(4), 395–397. https://doi.org/10.1128/jb.6.4.395-397.1921
Jackson R B, Fierer N, Schimel JP. 2007. New directions in microbial ecology. Ecology 88: 1343-1344. DOI: 10.1890/06-1882
Jane?ková Molnárová K, Skleni?ka P, Bohnet IC, Lowther-Harris F, van den Brink A, Movahhed Moghaddam S, Fanta V, Zást?ra V, Azadi H. 2023. Impacts of land consolidation on land degradation: a systematic review. J Environ Manage (329): 117026. DOI: 10.1016/j.jenvman.2022.117026.
Kaur M, Li J, Zhang P, Yang H, Wang L, Xu M. 2022. Agricultural soil physico-chemical parameters and microbial abundance and diversity under long-run farming practices: A greenhouse study. Frontiers in Ecology and Evolution (10):1-19. DOI: 10.3389/fevo.2022.1026771
Lefèvre C, Rekik F, Alcantara V, Wiese L. 2017. Soil organic carbon: The hidden potential. Rome: Food and Agriculture Organization of the United Nations (FAO).
Lauber CL, Hamady M, Knight R, Fierer N . 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community composition at the continental scale. Appl Environ Microbiol (75): 5111–5120.
Lazarova SS, de Goede RGM, Peneva VK, Bongers T. 2004. Spatial patterns of variation in the composition and structure of nematode communities in relation to different microhabitats: a case study of Quercus dalechampii Ten. forest, Soil Biology and Biochemistry, 36 (4): 701-712. DOI: 10.1016/j.soilbio.2004.01.005
Leiva NPF, Santana-Gomes SM, Zabini AV, Velázquez LMG, Dias-Arieira CR. 2020. Soil chemical properties and their relationship with phytonematode populations inside and outside patches of soybean fields, Rhizosphere (15): 100231. DOI: 10.1016/j.rhisph.2020.100231.
Liu J, Zhao W, He H, Kou Y, Liu Q. 2022. Variations in the community patterns of soil nematodes at different soil depths across successional stages of subalpine forests. Ecological Indicators (136): 108624. ISSN 1470-160X. DOI: 10.1016/j.ecolind.2022.108624.
Liu N, Hu H, Ma W, Deng Y, Liu Y, Hao B, Zhang X, Dimitrov D, Feng X, Wang Z. 2019. Contrasting biogeographic patterns of bacterial and archaeal diversity in the top- and subsoils of temperate grasslands. Bio R (14): 623264. DOI: 10.1101/623264
Li Y, Wen H, Chen L, Yin T. 2014. Succession of Bacterial Community Structure and Diversity in Soil along a Chronosequence of Reclamation and Re-Vegetation on Coal Mine Spoils in China. PLOS ONE 9 (12): e115024. DOI: 10.1371/journal.pone.0115024
Li Z, Chen X, Li J, Liao X, Li D, He X, Zhang W, Zhao J. 2022. Relationships between Soil Nematode Communities and Soil Quality as Affected by Land-Use Type. Forests 13 (10): 1658. DOI: 10.3390/f13101658
Ilieva-Makulec K, Bjarnadottir B, Sigurdsson B. 2015. Soil nematode communities on Surtsey, 50 years after the formation of the volcanic Island. Icelandic Agricultural Sciences 28: 43–58. DOI: 10.16886/IAS.2015.05.
Manosathiyadevan M, Bhuvaneshwari V, Latha R. 2017. Impact of Insects and Pests in loss of Crop Production: A Review. DOI: 10.1007/978-981-10-6647-4_4
Mudrak, O., Kunca, A., & Vrtá?nik, T. (2021). Impact of Soil Microorganisms on Soil Properties. In Soil Microorganisms (pp. 17-36). Springer.
Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., ... & Faria, M. (2021). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 47, 101053.
Wakil, W., Ghuffar, S., Sajjad, M., & Ghazanfar, M. U. (2018). Environmental factors affecting the distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Pakistan. Egyptian Journal of Biological Pest Control, 28(1), 9.
Koskella, B., Lively, C. M., & Widenfalk, L. A. (2020). Host-Parasite Interactions in the Wild. Oxford Research Encyclopedia of Ecology.
Schoonhoven LM, Van Loon JJA and Dicke M. 2005.Insect-Plant Biology. Oxford University Press, Oxford, United Kingdom.
Shrestha, U. B., Shrestha, S., & Adhikari, R. (2020). Arthropods, nematodes, and microorganisms: the non-conventional soil pests. In Insecticides—Development of Safer and More Effective Technologies (pp. 131-152). IntechOpen.
Sopialena, & Palupi, P. J. (2017). Study of climatic factors on the population dynamics of Pyricularia oryzaeon some varieties of paddy rice (Oryza sativa). Biodiversitas, 18(2), 701–708. https://doi.org/10.13057/biodiv/d180237
Prince, S., Von Maltitz, G., Zhang, F., Byrne, K., Driscoll, C., Eshel, G., Kust, G., Martínez-Garza, C., Metzger, J.P., Midgley, G., Moreno-Mateos, D., Sghaier, M., and Thwin, S. 2018. Chapter 4: Status and trends of land degradation and restoration and associated changes in biodiversity and ecosystem fundtions. In IPBES: The IPBES assessment report on land degradation and restoration. Montanarella, L., Scholes, R., and Brainich, A. (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem services, Bonn, Germany.
Rozp?dek, P., Nosek, M., Domka, A., Wa?ny, R., J?drzejczyk, R., Tokarz, K., ... & Turnau, K. (2019). Acclimation of the photosynthetic apparatus and alterations in sugar metabolism in response to inoculation with endophytic fungi. Plant, Cell & Environment, 42(4), 1408-1423.
Sasse J, Martinoia E, Northen T. 2017. Feed your friends: do plant exudates shape the root microbiome. Trends Plant Sci. (23): 25–41. DOI: 10.1016/j.tplants.2017.09.003.
Šourková, M., Frouz, J., & Šantrù?ková, H. (2005). Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma, 124(1-2), 203-214.
Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., & Venkitanarayanan, K. (2014). Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. BioMed research international, 2014.
Wang, CY, Zhou X, Guo D. 2019. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol (69): 1461–1473. DOI: 10.1007/s13213-019-01529-9
Wang H, Li X, Li X, Li F, Su Z, Zhang H. 2021. Community composition and Co-Occurrence patterns of diazotrophs along a soil profile in paddy fields of three soil types in China. Microb Ecol. (82): 961–70. DOI: 10.1007/S00248-021-01716-9/FIGURES/6.
Wang L, Li X. 2023. Soil Microbial Community and Their Relationship with Soil Properties across Various Landscapes in the Mu Us Desert. Forests (14): 2152. DOI: 10.3390/f14112152
Xu, L., Li, W., Zheng, W., Wang, G., Li, Q., & Du, J. (2020). Soil fungi and plant pathogens can mutually affect their fitness in a rhizosphere microbiome. Communications Biology, 3(1), 1-10.
Xu R, Song W, Zhang J, Jiang X, Zhang HZ, LI J, Li J. 2023. Changes and driving mechanism of soil microbial community in coal mining subsidence areas with high underground water levels. Authorea. DOI: 10.22541/au.167405242.29528628/v1
Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. (3): 470. DOI: 10.1038/s41564-018-0129-3
Zhang G, Sui X, Yang L, Jia M, Wang Z, Han G, Wang L. 2020. The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China. Journal of Soils and Sediments. DOI: 20.10.1007/s11368-019-02555-5.
Zhou Y, Coventry DR, Gupta VVSR, Fuentes D, Merchant A, Kaiser BN, Li J, Wei Y, Liu H, Wang Y, Gan S, Denton MD. 2020. The preceding root system drives the composition and function of the rhizosphere microbiome. Genome Biol. 21 (1): 89. DOI: 10.1186/s13059-020-01999-0