Yeasts isolated from bovine rumen selected to degrade lignocellulosic roughage

##plugins.themes.bootstrap3.article.main##

EDUARDO ROBSON DUARTE
SABRINA MIRANDA LIMA
https://orcid.org/0009-0005-0480-0675
JULIANE COSTA NERE
https://orcid.org/0009-0006-0376-9693
CLAUDIO EDUARDO SILVA FREITAS
https://orcid.org/0000-0002-0037-7655
HIGOR ALEXANDRE RODRIGUES MAIA
https://orcid.org/0000-0001-9944-0804
ALINE DANIELA LOPES JÚLIO
https://orcid.org/0000-0002-7431-7698
FLÁVIA OLIVEIRA ABRÃO
https://orcid.org/0000-0002-9768-7405
JANETE MARIA SILVA ALVES
https://orcid.org/0000-0001-8220-4629
VERA LÚCIA DOS SANTOS
https://orcid.org/0000-0001-5815-5652
LUCIANA CASTRO GERASEEV
https://orcid.org/0000-0002-7431-7698
JÚNIO COTA
https://orcid.org/0000-0002-1547-4087

Abstract

Abstract. Duarte ER, Lima SM, Nere JC, Freitas CES, Maia HAR, Júlio ADL, Abrão FO, Alves JMS, Santos VLD, Geraseev LC, Cota J. 2024. Yeasts isolated from bovine rumen selected to degrade lignocellulosic roughage. Biodiversitas 25: 1159-1166. Commercial yeast strains are viable alternatives to chemical additives in ruminants; however, they are not self to the rumen ecosystem. The present study was conducted to compare the degradation of Urochloa decumbens (Stapf) R.D.Webster (UD) hay and sugarcane bagasse (SB) by eight selected yeast strains, naturally present in the rumen cows and control without microorganisms. Eight yeast isolates that showed >6 log CFU per mL of ruminal fluid were selected and identified as four Pichia kudriavzevii isolates, three Rhodotorula mucilaginosa isolates and one Candida tropicalis isolate, according to their morphological and physiological characteristics and by analyses of the D1 - D2 variable domain sequences of the 28S rRNA gene. The strain V5 (R. mucilaginosa) showed higher cell biomass production than other strains of this species in fermentations with UD (P<0.05). Two isolates of Pichia kudriavzevii (V10 and V62) and one of R. mucilaginosa (V5) promoted a higher reduction of dry matter (DM) of UD than other yeast. The strain V5 was also the most efficient to reduce DM of SB (P <0.05). These selected yeasts could represent a potential alternative for use in animal diets and for industrial applications.

##plugins.themes.bootstrap3.article.details##

References
Abrão FO, Duarte ER, Freitas CES, Vieira EA, Geraseev LC, Silva Hughes AF, Rosa CA, Rodrigues NM. 2014. Characterization of fungi from ruminal fluid of beef cattle with different ages and raised in tropical lignified pastures. Curr Microbiol 69: 649-659. DOI: 10.1007/s00284-014-0670-2.
Abrão FO, Freitas CES, Duarte ER, Geraseev LC, Barreto SMP, Medeiros AO, Rosa C. 2011. Leveduras no rúmen de caprinos e bovinos de corte criados em pastagem tropicais. Arq Bras Med Vet Zootec 63: 526-529. DOI: 10.1590/S0102-09352011000200034.
Amin AB, Mao S. 2021. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim Nutr 7: 31-41. DOI: 10.1016/j.aninu.2020.10.005.
Ardani LR, Marlida Y, Zain M, Jamsari J, Fassah DM. 2023. Lactic acid bacteria and yeast strains isolated from fermented fish. Budu identified as candidate ruminant probiotics based on in vitro rumen fermentation characteristics. Vet World 16: 395-402. DOI: 10.14202/vetworld.2023.395-402.
Asfour HAE, Eid RH, EL-Wakeel SA, Behour TS, Darwish SF. 2022. Phenotypic and genotypic investigation of yeast species associated with bovine subclinical mastitis with a special reference to their virulence characteristics. Intern J Vet Sci 11: 49-58. DOI: 10.47278/journal.ijvs/2021.071.
Avchar R, Lanjekar V, Kshirsagar P, Dhakephalkar PK, Dagar SS, Baghela A. 2021. Buffalo rumen harbours diverse thermotolerant yeasts capable of producing second-generation bioethanol from lignocellulosic biomass. Renewable Energy 173: 795-807. DOI: 10.1016/j.renene.2021.03.137.
Baker LM, Kraft J, Karnezos TP, Greenwood SL 2022. The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Anim Feed Sci Technol 294: 115476.. DOI: 10.1016/j.anifeedsci.2022.115476
Bayat AR, Kairenius P, Stefa?ski T, Leskinen H, Comtet-Marre S, Forano E, Chaucheyras-Durand F, Shingfield KJ. 2015. Effect of camelina oil or live yeasts. Saccharomyces cerevisiae on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J Dairy Sci 98: 3166-3181. DOI: 10.3168/jds.2014-7976.
Chu Y, Li M, Jin J, Dong X, Xu K, Jin L, Qiao Y, Ji H. 2023. Advances in the application of the non-conventional yeast Pichia kudriavzevii in food and biotechnology industries. J Fungi 9: 170-178. DOI: 10.3390/jof9020170.
Clarke RTJ, Menna ME. 1961. Yeasts from the bovine rumen. J Genet Microbiol 25: 113 -117. DOI: 10.1099/00221287-25-1-113.
Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Zimmer M. 2015. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29: 108-119. DOI: 10.1016/j.cbpa.2015.10.018.
Deligios M, Fraumene C, Abbondio M, Mannazzu I, Tanca A, Addis MF, Uzzau S. 2015. Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announc 3 (2): e00201-15. DOI: 10.1128/genomeA.00201-15.
Duarte ER, Maia HAR, Freitas CES. 2021. Hydrolysis of lignocellulosic forages by Trichoderma longibrachiatum isolate from bovine rumen. Biocatal Agric Biotechnol 36: 102135. DOI: 10.1016/j.bcab.2021.102135.
Fernandes T, Carvalho BF, Mantovani HC, Schwan RF, Ávila CLS. 2019. Identification and characterization of yeasts from bovine rumen for potential use as probiotics. J Appl Microbiol 127: 845 -855. DOI: 10.1111/jam.14322.
Francisco AE, Santos-Silva JM, V Portugal AP, Alves SP, B Bessa RJ. 2019. Relationship between rumen ciliate protozoa and biohydrogenation fatty acid profile in rumen and meat of lambs. PLoS One 14 (9): e0221996. DOI: 10.1371/journal.pone.0221996.
Ganapathiwar S, Bhukya B. 2023. In vitro assessment for the probiotic potential of Pichia kudriavzevii. Bioinformation 19: 441-444. DOI: 10.6026/97320630019441.
Garcia MJF, Ishaq SL, Rodriguez Herrera MV, Garcia Hernandez CA, Kawas JR, Nagaraja TG. 2019. Review, Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition, and productivity traits. Animal 15: 1-9. DOI: 10.1017/S1751731119001599.
Huebner KL, Martin JN, Weissend CJ, Holzer KL, Parker JK, Lakin SM, Doster E, Weinroth MD, Abdo Z, Woerner DR, Metcalf JL, Geornaras I, Bryant TC, Morley PS, Belk KE. 2019. Effects of a Saccharomyces cerevisiae fermentation product on liver abscesses, fecal microbiome, and resistome in feedlot cattle raised without antibiotics. Sci Rep 9: 2559. DOI: 10.1038/s41598-019-39181-7.
Intanoo M, Kongkeitkajorn MB, Suriyasathaporn W, Phasuk Y, Bernard JK, Pattarajinda V. 2020. Effect of supplemental Kluyveromyces marxianus and Pichia kudriavzevii on aflatoxin M1 excretion in milk of lactating dairy cows. Animals 10: 709. DOI: 10.3390/ani10040709.
Jiang Y, Ogunade IM, Qi S, Hackmann TJ, Staples CR, Adesogan AT. 2017. Effects of the dose and viability of Saccharomyces cerevisiae. L. diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR. J Anim Sci 100: 325-342. DOI:10.3168/jds.2016-11263
Kong L, Yang C, Dong L, Diao Q, Si B, Ma J, Tu Y. 2019. Rumen Fermentation Characteristics in pre and post weaning calves upon feeding with mulberry leaf flavonoids and Candida tropicalis individually or in combination as a supplement. Animals 9 (11): 990. DOI: 10.3390/ani9110990.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. Mega X, molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547-1549. DOI: 10.1093/molbev/msy096.
Kurtzman CP, Fell JW, Boekhout T, Robert V. 2011. Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds). The Yeasts, A Taxonomic Study. 5th (eds). Elsevier, Amsterdam. DOI: 10.1016/B978-0-444-52149-1.00007-0.
Marrero Y, Castillo Y, Ruiz O, Burrola E, Angulo C. 2015. Feeding of yeast Candida spp. improves in vitro ruminal fermentation of fibrous substrates. J Integr Agric 14: 514-519. DOI: 10.1016/S2095-3119. 1460830-3.
Mukherjee V, Radecka D, Aerts G, Verstrepen KJ, Lievens B, Thevelein JM. 2017. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnol Biofuels 10: 1-19. DOI: 10.1186/s13068-017-0899-5.
Panda SC. 2014. Forage Crops and Grasses. Agrobios Publications, Rajasthan, India.
Prakasan P, Unni KN, Sajith S, Benjamin S. 2013. Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate. Yeast 30: 103 -110. DOI: 10.1002/yea.2949.
Ramos LS, Barbedo LS, Braga-Silva LA, Santos ALS, Pintoa MR, Sgarbi DBG. 2015. Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol 32: 122-125. DOI: 10.1016/j.riam.2014.01.003.
Sánchez A, Vázquez A. 2017. Bioactive peptides: A review. Food Qual Saf 1: 29-46. DOI:10.1093/fqsafe/fyx006.
Silva MRP, Zervoudakis JT, Nakazato L, Hatamoto-Zervoudakis LK, Cabral LS, Matos NBN. 2019. Ruminal microbial populations and fermentation characteristics in beef cattle grazing tropical forage in the dry season and supplemented with different protein levels. Curr Microbiol 76: 270-278. DOI: 10.1007/s00284-019-01631-w.
Suntara C, Cherdthong A, Uriyapongson S, Wanapat M, Chanjula P. 2021. Novel crabtree negative yeast from rumen fluids can improve rumen fermentation and milk quality. Sci Rep 11. DOI: 10.1038/s41598-021-85643-2.
Vyas D, Uwizeye A, Mohammed R, Yang WZ, Walker ND, Beauchemin KA. 2014. The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. J Anim Sci 92: 724-732. DOI: 10.2527/jas.2013-7072.
Wang D, An N, Yang Y, Yang X, Fan Y, Feng J. 2021. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression. Antimicrob Resist Infect Control 10: 1-9. DOI: 10.1186/s13756-021-00890-2.